197 research outputs found

    FRM-Based FIR filters with minimum coefficient sensitivities

    Get PDF
    A method for optimizing FRM-based FIR filters with optimum coefficient sensitivity is presented. This technique can be used in conjunction with nonlinear optimization techniques to design very sharp filters that do not only have very sparse coefficient values but also very low coefficient sensitivity

    Design of multi-plet perfect reconstruction filter banks using frequency-response masking technique

    Get PDF
    This paper proposes a new design method for a class of two-channel perfect reconstruction (PR) filter banks (FBs) called multi-plet FBs with very sharp cutoff using frequency- response masking (FRM) technique. The multi-plet FBs are PR FBs and their frequency characteristics are controlled by a single subfilter. By recognizing the close relationship between the subfilter and the FRM-based halfband filter, very sharp cutoff PR multi-plet FBs can be realized with reduced implementation complexity. The design procedure is very general and it can be applied to both linear-phase and low-delay PR FBs. Design examples are given to demonstrate the usefulness of the proposed method. © 2008 IEEE.published_or_final_versio

    Synthesis methods for linear-phase FIR filters with a piecewise-polynomial impulse response

    Get PDF
    his thesis concentrates on synthesis methods for linear-phase finite-impulse response filters with a piecewise-polynomial impulse response. One of the objectives has been to find integer-valued coefficients to efficiently implement filters of the piecewise-polynomial impulse response approach introduced by Saram¨aki and Mitra. In this method, the impulse response is divided into blocks of equal length and each block is created by a polynomial of a given degree. The arithmetic complexity of these filters depends on the polynomial degree and the number of blocks. By using integer-valued coefficients it is possible to make the implementation of the subfilters, which generates the polynomials, multiplication-free. The main focus has been on finding computationally-efficient synthesis methods by using a piecewise-polynomial and a piecewise-polynomial-sinusoidal impulse responses to make it possible to implement high-speed, low-power, highly integrated digital signal processing systems. The earlier method by Chu and Burrus has been studied. The overall impulse response of the approach proposed in this thesis consists of the sum of several polynomial-form responses. The arithmetic complexity depends on the polynomial degree and the number of polynomial-form responses. The piecewise-polynomial-sinusoidal approach is a modification of the piecewise-polynomial approach. The subresponses are multiplied by a sinusoidal function and an arbitrary number of separate center coefficients is added. Thereby, the arithmetic complexity depends also on the number of complex multipliers and separately generated center coefficients. The filters proposed in this thesis are optimized by using linear programming methods

    Development and Implementation of a VHF High Power Amplifier for the Multi-Channel Coherent Radar Depth Sounder/Imager System

    Get PDF
    This thesis presents the implementation and characterization of a VHF high power amplifier developed for the Multi-channel Coherent Radar Depth Sounder/Imager (MCoRDS/I) system. MCoRDS/I is used to collect data on the thickness and basal topography of polar ice sheets, ice sheet margins, and fast-flowing glaciers from airborne platforms. Previous surveys have indicated that higher transmit power is needed to improve the performance of the radar, particularly when flying over challenging areas. The VHF high power amplifier system presented here consists of a 50-W driver amplifier and a 1-kW output stage operating in Class C. Its performance was characterized and optimized to obtain the best tradeoff between linearity, output power, efficiency, and conducted and radiated noise. A waveform pre-distortion technique to correct for gain variations (dependent on input power and operating frequency) was demonstrated using digital techniques. The amplifier system is a modular unit that can be expanded to handle a larger number of transmit channels as needed for future applications. The system can support sequential transmit/receive operations on a single antenna by using a high-power circulator and a duplexer circuit composed of two 90° hybrid couplers and anti-parallel diodes. The duplexer is advantageous over switches based on PIN-diodes due to the moderately high power handling capability and fast switching time. The system presented here is also smaller and lighter than previous implementations with comparable output power levels

    Window Functions and Their Applications in Signal Processing

    Get PDF
    Window functions—otherwise known as weighting functions, tapering functions, or apodization functions—are mathematical functions that are zero-valued outside the chosen interval. They are well established as a vital part of digital signal processing. Window Functions and their Applications in Signal Processing presents an exhaustive and detailed account of window functions and their applications in signal processing, focusing on the areas of digital spectral analysis, design of FIR filters, pulse compression radar, and speech signal processing. Comprehensively reviewing previous research and recent developments, this book: Provides suggestions on how to choose a window function for particular applications Discusses Fourier analysis techniques and pitfalls in the computation of the DFT Introduces window functions in the continuous-time and discrete-time domains Considers two implementation strategies of window functions in the time- and frequency domain Explores well-known applications of window functions in the fields of radar, sonar, biomedical signal analysis, audio processing, and synthetic aperture rada

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Treatise on Hearing: The Temporal Auditory Imaging Theory Inspired by Optics and Communication

    Full text link
    A new theory of mammalian hearing is presented, which accounts for the auditory image in the midbrain (inferior colliculus) of objects in the acoustical environment of the listener. It is shown that the ear is a temporal imaging system that comprises three transformations of the envelope functions: cochlear group-delay dispersion, cochlear time lensing, and neural group-delay dispersion. These elements are analogous to the optical transformations in vision of diffraction between the object and the eye, spatial lensing by the lens, and second diffraction between the lens and the retina. Unlike the eye, it is established that the human auditory system is naturally defocused, so that coherent stimuli do not react to the defocus, whereas completely incoherent stimuli are impacted by it and may be blurred by design. It is argued that the auditory system can use this differential focusing to enhance or degrade the images of real-world acoustical objects that are partially coherent. The theory is founded on coherence and temporal imaging theories that were adopted from optics. In addition to the imaging transformations, the corresponding inverse-domain modulation transfer functions are derived and interpreted with consideration to the nonuniform neural sampling operation of the auditory nerve. These ideas are used to rigorously initiate the concepts of sharpness and blur in auditory imaging, auditory aberrations, and auditory depth of field. In parallel, ideas from communication theory are used to show that the organ of Corti functions as a multichannel phase-locked loop (PLL) that constitutes the point of entry for auditory phase locking and hence conserves the signal coherence. It provides an anchor for a dual coherent and noncoherent auditory detection in the auditory brain that culminates in auditory accommodation. Implications on hearing impairments are discussed as well.Comment: 603 pages, 131 figures, 13 tables, 1570 reference
    corecore