520 research outputs found

    On prefilters for digital FIR filter design

    Get PDF
    A new family of digital prefilter structures is introduced, based on the Dolph-Chebyshev function. These prefilters can be combined with appropriately designed "equalizer" filters based on equiripple methods, leading to efficient FIR digital filter designs. Design examples are included, demonstrating the simplicity of the resulting designs, as compared to conventional equiripple designs

    An efficient design or fractional-delay digital FIR filters using the Farrow structure

    Get PDF
    Fractional-delay digital filter (FD-DF), implemented using the Farrow (1988) structure, is very attractive in providing online tuning delay of digital signals. This paper proposes a new method for the design of such Farrow-based FD-DF using sum-of-powers-of-two (SOPOT) coefficients. Using the SOPOT coefficient representation, coefficient multiplication can be implemented with limited number of shifts and additions. Design examples show that the proposed method can greatly reduce the design time and complexity of the Farrow structure while providing comparable phase and amplitude responses.published_or_final_versio

    To Develop and Implement Low Power, High Speed VLSI for Processing Signals using Multirate Techniques

    Get PDF
    Multirate technique is necessary for systems with different input and output sampling rates. Recent advances in mobile computing and communication applications demand low power and high speed VLSI DSP systems [4]. This Paper presents Multirate modules used for filtering to provide signal processing in wireless communication system. Many architecture developed for the design of low complexity, bit parallel Multiple Constant Multiplications operation which dominates the complexity of DSP systems. However, major drawbacks of present approaches are either too costly or not efficient enough. On the other hand, MCM and digit-serial adder offer alternative low complexity designs, since digit-serial architecture occupy less area and are independent of the data word length [1][10]. Multiple Constant Multiplications is efficient way to reduce the number of addition and subtraction in polyphase filter implementation. This Multirate design methodology is systematic and applicable to many problems. In this paper, attention has given to the MCM & digit serial architecture with shifting and adding techniques that offers alternative low complexity in operations. This paper also focused on Multirate Signal Processing Modules using Voltage and Technology scaling. Reduction of power consumption is important for VLSI system and also it becomes one of the most critical design parameter. Transistorized Multirate module which has full custom design with different circuit topology and optimization level simulated on cadence platform. Multirate modules are used AMI 0.6 um, TSMC 0.35 um, and TSMC 0.25 um technologies for different voltage scaling. The presented methodology provides a systematic way to derive circuit technique for high speed operation at a low supply voltage. Multirate polyphase interpolator and decimator are also designed and optimized at architectural level in order to analyze the terms power consumption, area and speed. DOI: 10.17762/ijritcc2321-8169.150314

    Fir filter design for area efficient implementation /

    Get PDF
    In this dissertation, a variable precision algorithm based on sensitivity analysis is proposed for reducing the wordlength of the coefficients and/or the number of nonzero bits of the coefficients to reduce the complexity required in the implementation. Further space savings is possible if the proposed algorithm is associated with our optimal structures and derived scaling algorithm. We also propose a structure to synthesize FIR filters using the improved prefilter equalizer structure with arbitrary bandwidth, and our proposed filter structure reduces the area required. Our improved design is targeted at improving the prefilters based on interpolated FIR filter and frequency masking design and aims to provide a sharp transition-band as well as increasing the stopband attenuation. We use an equalizer designed to compensate the prefilter performance. In this dissertation, we propose a systematic procedure for designing FIR filters implementations. Our method yields a good design with low coefficient sensitivity and small order while satisfying design specifications. The resulting hardware implementation is suitable for use in custom hardware such as VLSI and Field Programmable Gate Arrays (FPGAs).FIR filters are preferred for many Digital Signal Processing applications as they have several advantages over IIR filters such as the possibility of exact linear phase, shorter required wordlength and guaranteed stability. However, FIR filter applications impose several challenges on the implementations of the systems, especially in demanding considerably more arithmetic operations and hardware components. This dissertation focuses on the design and implementation of FIR filters in hardware to reduce the space required without loss of performance

    On the design and efficient implementation of the Farrow structure

    Get PDF
    This letter proposes an efficient implementation of the Farrow structure using sum-of-powers-of-two (SOPOT) coefficients and multiplier-block (MB). In particular, a novel algorithm for designing the Farrow coefficients in SOPOT form is detailed. Using the SOPOT coefficient representation, coefficient multiplication can be implemented with limited number of shifts and additions. Using MB, the redundancy between multipliers can be fully exploited through the reuse of the intermediate results generated. Design examples show that the proposed method can greatly reduce the complexity of the Farrow structure while providing comparable phase and amplitude responses.published_or_final_versio

    Design and multiplierless realization of digital synthesis filters for hybrid-filter-bank A/D converters

    Get PDF
    This paper studies the optimal least squares and minimax design and realization of digital synthesis filters for hybrid-filter-bank analog-to-digltal converters (HFB ADCs) to meet a given spurious-free dynamic range (SFDR). The problem for designing finite-impulse-response synthesis filters is formulated as a second-order cone-programming problem, which is convex and allows linear and quadratic constraints such as peak aliasing error to be incorporated. The fixed coefficients of the designed synthesis filters are efficiently implemented using sum-of-power-of-two (SOPOT) coefficients, while the internal word length used for each intermediate data is minimized using geometric programming. The main sources of error are analyzed, and a new formula of SFDR in terms of these errors is derived. The effects of component variations of analog analysis filters on the HFB ADC are also addressed by means of two new robust HFB ADC design algorithms based on stochastic uncertainty and worst case uncertainty models. Design results show that the proposed approach offers more flexibility and better performance than conventional methods in achieving a given SFDR and that the robust design algorithms are more robust to parameter uncertainties than the nominal design in which the uncertainties are not taken into account. © 2009 IEEE.published_or_final_versio
    corecore