664 research outputs found

    Multilinear methods for disentangling variations with applications to facial analysis

    Get PDF
    Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, among others. Each factor accounts for a source of variability in the data. It is assumed that the multiplicative interactions of these factors emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved factors from visual data is a challenging task, especially when the data have been captured in uncontrolled recording conditions (also referred to as “in-the-wild”) and label information is not available. The work presented in this thesis focuses on disentangling the variations contained in visual data, in particular applied to 2D and 3D faces. The motivation behind this work lies in recent developments in the field, such as (i) the creation of large, visual databases for face analysis, with (ii) the need of extracting information without the use of labels and (iii) the need to deploy systems under demanding, real-world conditions. In the first part of this thesis, we present a method to synthesise plausible 3D expressions that preserve the identity of a target subject. This method is supervised as the model uses labels, in this case 3D facial meshes of people performing a defined set of facial expressions, to learn. The ability to synthesise an entire facial rig from a single neutral expression has a large range of applications both in computer graphics and computer vision, ranging from the ecient and cost-e↵ective creation of CG characters to scalable data generation for machine learning purposes. Unlike previous methods based on multilinear models, the proposed approach is capable to extrapolate well outside the sample pool, which allows it to accurately reproduce the identity of the target subject and create artefact-free expression shapes while requiring only a small input dataset. We introduce global-local multilinear models that leverage the strengths of expression-specific and identity-specific local models combined with coarse motion estimations from a global model. The expression-specific and identity-specific local models are built from di↵erent slices of the patch-wise local multilinear model. Experimental results show that we achieve high-quality, identity-preserving facial expression synthesis results that outperform existing methods both quantitatively and qualitatively. In the second part of this thesis, we investigate how the modes of variations from visual data can be extracted. Our assumption is that visual data has an underlying structure consisting of factors of variation and their interactions. Finding this structure and the factors is important as it would not only help us to better understand visual data but once obtained we can edit the factors for use in various applications. Shape from Shading and expression transfer are just two of the potential applications. To extract the factors of variation, several supervised methods have been proposed but they require both labels regarding the modes of variations and the same number of samples under all modes of variations. Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. We propose a novel general multilinear matrix decomposition method that discovers the multilinear structure of possibly incomplete sets of visual data in unsupervised setting. We demonstrate the applicability of the proposed method in several computer vision tasks, including Shape from Shading (SfS) (in the wild and with occlusion removal), expression transfer, and estimation of surface normals from images captured in the wild. Finally, leveraging the unsupervised multilinear method proposed as well as recent advances in deep learning, we propose a weakly supervised deep learning method for disentangling multiple latent factors of variation in face images captured in-the-wild. To this end, we propose a deep latent variable model, where we model the multiplicative interactions of multiple latent factors of variation explicitly as a multilinear structure. We demonstrate that the proposed approach indeed learns disentangled representations of facial expressions and pose, which can be used in various applications, including face editing, as well as 3D face reconstruction and classification of facial expression, identity and pose.Open Acces

    Face Recognition: Issues, Methods and Alternative Applications

    Get PDF
    Face recognition, as one of the most successful applications of image analysis, has recently gained significant attention. It is due to availability of feasible technologies, including mobile solutions. Research in automatic face recognition has been conducted since the 1960s, but the problem is still largely unsolved. Last decade has provided significant progress in this area owing to advances in face modelling and analysis techniques. Although systems have been developed for face detection and tracking, reliable face recognition still offers a great challenge to computer vision and pattern recognition researchers. There are several reasons for recent increased interest in face recognition, including rising public concern for security, the need for identity verification in the digital world, face analysis and modelling techniques in multimedia data management and computer entertainment. In this chapter, we have discussed face recognition processing, including major components such as face detection, tracking, alignment and feature extraction, and it points out the technical challenges of building a face recognition system. We focus on the importance of the most successful solutions available so far. The final part of the chapter describes chosen face recognition methods and applications and their potential use in areas not related to face recognition

    Geometric Expression Invariant 3D Face Recognition using Statistical Discriminant Models

    No full text
    Currently there is no complete face recognition system that is invariant to all facial expressions. Although humans find it easy to identify and recognise faces regardless of changes in illumination, pose and expression, producing a computer system with a similar capability has proved to be particularly di cult. Three dimensional face models are geometric in nature and therefore have the advantage of being invariant to head pose and lighting. However they are still susceptible to facial expressions. This can be seen in the decrease in the recognition results using principal component analysis when expressions are added to a data set. In order to achieve expression-invariant face recognition systems, we have employed a tensor algebra framework to represent 3D face data with facial expressions in a parsimonious space. Face variation factors are organised in particular subject and facial expression modes. We manipulate this using single value decomposition on sub-tensors representing one variation mode. This framework possesses the ability to deal with the shortcomings of PCA in less constrained environments and still preserves the integrity of the 3D data. The results show improved recognition rates for faces and facial expressions, even recognising high intensity expressions that are not in the training datasets. We have determined, experimentally, a set of anatomical landmarks that best describe facial expression e ectively. We found that the best placement of landmarks to distinguish di erent facial expressions are in areas around the prominent features, such as the cheeks and eyebrows. Recognition results using landmark-based face recognition could be improved with better placement. We looked into the possibility of achieving expression-invariant face recognition by reconstructing and manipulating realistic facial expressions. We proposed a tensor-based statistical discriminant analysis method to reconstruct facial expressions and in particular to neutralise facial expressions. The results of the synthesised facial expressions are visually more realistic than facial expressions generated using conventional active shape modelling (ASM). We then used reconstructed neutral faces in the sub-tensor framework for recognition purposes. The recognition results showed slight improvement. Besides biometric recognition, this novel tensor-based synthesis approach could be used in computer games and real-time animation applications
    corecore