385 research outputs found

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery

    Low power digital signal processing

    Get PDF

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    Automatisoitu vuo suodinten laitteistokuvauksen tuottamiseen

    Get PDF
    Digitaalisia suotimia käytetään signaalien käsittelyyn monilla eri tekniikan alueilla, kuten telekommunikaatiossa, kuvankäsittelyssä ja lääketieteellisissä laitteissa. Ne ovat niin yleisiä, että insinöörit käyttävät paljon aikaa ja resursseja niiden toteuttamiseen ja verifioimiseen. Koska yleisimpien suotimien rakenne on melko yksinkertainen, niiden luominen voidaan automatisoida generaattorin avulla. Tässä diplomityössä Nokia Networksin vaatimukset kartoitetaan automatisoidun suodinten laitteistokuvauksen tuottamisvuon kehittämiseksi. Erilaisia tuottamismenetelmiä vertaillaan, mutta lopulta päädytään kehittämään oma generaattori. Se luo suotimia yhdistelemällä osia käsinkirjoitetusta RTL:stä. Lopputuloksena on automatisoitu vuo, joka tukee vakiokertoimilla varustettuja, yhden tai useamman kanavan FIR-suotimia. Käyttäjän tulee syöttää kertoimet ja haluttu datanleveys Matlab-skriptiin. Ajettaessa skripti luo suotimen ja verifioi sen. Vuo tukee sekä ASIC- että FPGA-teknologioita.Digital filters are used to process signals in many fields like telecommunications, image processing and in medical equipment. They are so omnipresent that engineers are building and verifying those all the time, using a lot of resources. As the structure of a basic filter is quite simple, savings could be made by automatizing the creation of filters. In this Thesis the requirements of Nokia Networks are analyzed to build an automatized filter generation flow. Different tools are evaluated, but finally a custom generator is built. It crafts filters from pieces of hand-written RTL. The end result is an automated flow which supports single and multichannel FIR filters with constant coefficients. The user has to input the coefficients to a Matlab script with the desired data widths. The filter is then generated and verified by running the script. The flow supports both ASIC and FPGA technologies

    Automatisoitu vuo suodinten laitteistokuvauksen tuottamiseen

    Get PDF
    Digitaalisia suotimia käytetään signaalien käsittelyyn monilla eri tekniikan alueilla, kuten telekommunikaatiossa, kuvankäsittelyssä ja lääketieteellisissä laitteissa. Ne ovat niin yleisiä, että insinöörit käyttävät paljon aikaa ja resursseja niiden toteuttamiseen ja verifioimiseen. Koska yleisimpien suotimien rakenne on melko yksinkertainen, niiden luominen voidaan automatisoida generaattorin avulla. Tässä diplomityössä Nokia Networksin vaatimukset kartoitetaan automatisoidun suodinten laitteistokuvauksen tuottamisvuon kehittämiseksi. Erilaisia tuottamismenetelmiä vertaillaan, mutta lopulta päädytään kehittämään oma generaattori. Se luo suotimia yhdistelemällä osia käsinkirjoitetusta RTL:stä. Lopputuloksena on automatisoitu vuo, joka tukee vakiokertoimilla varustettuja, yhden tai useamman kanavan FIR-suotimia. Käyttäjän tulee syöttää kertoimet ja haluttu datanleveys Matlab-skriptiin. Ajettaessa skripti luo suotimen ja verifioi sen. Vuo tukee sekä ASIC- että FPGA-teknologioita.Digital filters are used to process signals in many fields like telecommunications, image processing and in medical equipment. They are so omnipresent that engineers are building and verifying those all the time, using a lot of resources. As the structure of a basic filter is quite simple, savings could be made by automatizing the creation of filters. In this Thesis the requirements of Nokia Networks are analyzed to build an automatized filter generation flow. Different tools are evaluated, but finally a custom generator is built. It crafts filters from pieces of hand-written RTL. The end result is an automated flow which supports single and multichannel FIR filters with constant coefficients. The user has to input the coefficients to a Matlab script with the desired data widths. The filter is then generated and verified by running the script. The flow supports both ASIC and FPGA technologies

    Multiplierless, Folded 9/7 - 5/3 Wavelet VLSI Architecture

    Get PDF

    Low Power Digital Filter Implementation in FPGA

    Get PDF
    Digital filters suitable for hearing aid application on low power perspective have been developed and implemented in FPGA in this dissertation. Hearing aids are primarily meant for improving hearing and speech comprehensions. Digital hearing aids score over their analog counterparts. This happens as digital hearing aids provide flexible gain besides facilitating feedback reduction and noise elimination. Recent advances in DSP and Microelectronics have led to the development of superior digital hearing aids. Many researchers have investigated several algorithms suitable for hearing aid application that demands low noise, feedback cancellation, echo cancellation, etc., however the toughest challenge is the implementation. Furthermore, the additional constraints are power and area. The device must consume as minimum power as possible to support extended battery life and should be as small as possible for increased portability. In this thesis we have made an attempt to investigate possible digital filter algorithms those are hardware configurable on low power view point. Suitability of decimation filter for hearing aid application is investigated. In this dissertation decimation filter is implemented using ‘Distributed Arithmetic’ approach.While designing this filter, it is observed that, comb-half band FIR-FIR filter design uses less hardware compared to the comb-FIR-FIR filter design. The power consumption is also less in case of comb-half band FIR-FIR filter design compared to the comb-FIR-FIR filter. This filter is implemented in Virtex-II pro board from Xilinx and the resource estimator from the system generator is used to estimate the resources. However ‘Distributed Arithmetic’ is highly serial in nature and its latency is high; power consumption found is not very low in this type of filter implementation. So we have proceeded for ‘Adaptive Hearing Aid’ using Booth-Wallace tree multiplier. This algorithm is also implemented in FPGA and power calculation of the whole system is done using Xilinx Xpower analyser. It is observed that power consumed by the hearing aid with Booth-Wallace tree multiplier is less than the hearing aid using Booth multiplier (about 25%). So we can conclude that the hearing aid using Booth-Wallace tree multiplier consumes less power comparatively. The above two approached are purely algorithmic approach. Next we proceed to combine circuit level VLSI design and with algorithmic approach for further possible reduction in power. A MAC based FDF-FIR filter (algorithm) that uses dual edge triggered latch (DET) (circuit) is used for hearing aid device. It is observed that DET based MAC FIR filter consumes less power than the traditional (single edge triggered, SET) one (about 41%). The proposed low power latch provides a power saving upto 65% in the FIR filter. This technique consumes less power compared to previous approaches that uses low power technique only at algorithmic abstraction level. The DET based MAC FIR filter is tested for real-time validation and it is observed that it works perfectly for various signals (speech, music, voice with music). The gain of the filter is tested and is found to be 27 dB (maximum) that matches with most of the hearing aid (manufacturer’s) specifications. Hence it can be concluded that FDF FIR digital filter in conjunction with low power latch is a strong candidate for hearing aid application

    Principles, fundamentals, and applications of programmable integrated photonics

    Full text link
    [EN] Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of Moore¿s Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach¿Zehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far.European Research Council; Conselleria d'Educació, Investigació, Cultura i Esport; Ministerio de Ciencia, Innovación y Universidades; European Cooperation in Science and Technology; Horizon 2020 Framework Programme.Pérez-López, D.; Gasulla Mestre, I.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics. 12(3):709-786. https://doi.org/10.1364/AOP.387155709786123Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26-38. doi:10.1109/35.393001Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634. doi:10.1109/surv.2014.012214.00180Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060-1071. doi:10.1109/tc.2013.31Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642Harris, N. C., Steinbrecher, G. R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., … Englund, D. (2017). Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics, 11(7), 447-452. doi:10.1038/nphoton.2017.95Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D. A., … Morichetti, F. (2017). Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications, 6(12), e17110-e17110. doi:10.1038/lsa.2017.110Perez, D., Gasulla, I., & Capmany, J. (2018). Toward Programmable Microwave Photonics Processors. Journal of Lightwave Technology, 36(2), 519-532. doi:10.1109/jlt.2017.2778741Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994Miller, D. A. B. (2017). Meshing optics with applications. Nature Photonics, 11(7), 403-404. doi:10.1038/nphoton.2017.104Thomas-Peter, N., Langford, N. K., Datta, A., Zhang, L., Smith, B. J., Spring, J. B., … Walmsley, I. A. (2011). Integrated photonic sensing. New Journal of Physics, 13(5), 055024. doi:10.1088/1367-2630/13/5/055024Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001Coldren, L. A., Nicholes, S. C., Johansson, L., Ristic, S., Guzzon, R. S., Norberg, E. J., & Krishnamachari, U. (2011). High Performance InP-Based Photonic ICs—A Tutorial. Journal of Lightwave Technology, 29(4), 554-570. doi:10.1109/jlt.2010.2100807Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., … Joyner, C. (2013). From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits. Proceedings of the IEEE, 101(10), 2255-2270. doi:10.1109/jproc.2013.2275018Hochberg, M., & Baehr-Jones, T. (2010). Towards fabless silicon photonics. Nature Photonics, 4(8), 492-494. doi:10.1038/nphoton.2010.172Bogaerts, W., Fiers, M., & Dumon, P. (2014). Design Challenges in Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-8. doi:10.1109/jstqe.2013.2295882Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. doi:10.1017/cbo9781316084168Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413Keyvaninia, S., Muneeb, M., Stanković, S., Van Veldhoven, P. J., Van Thourhout, D., & Roelkens, G. (2012). Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3(1), 35. doi:10.1364/ome.3.000035Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937Corbett, B., Loi, R., Zhou, W., Liu, D., & Ma, Z. (2017). Transfer print techniques for heterogeneous integration of photonic components. Progress in Quantum Electronics, 52, 1-17. doi:10.1016/j.pquantelec.2017.01.001Van der Tol, J. J. G. M., Jiao, Y., Shen, L., Millan-Mejia, A., Pogoretskii, V., van Engelen, J. P., & Smit, M. K. (2018). Indium Phosphide Integrated Photonics in Membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1-9. doi:10.1109/jstqe.2017.2772786Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756Desurvire, E. (2009). Classical and Quantum Information Theory. doi:10.1017/cbo9780511803758Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009Capmany, J., & Pérez, D. (2020). Programmable Integrated Photonics. doi:10.1093/oso/9780198844402.001.0001Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135Mennea, P. L., Clements, W. R., Smith, D. H., Gates, J. C., Metcalf, B. J., Bannerman, R. H. S., … Smith, P. G. R. (2018). Modular linear optical circuits. Optica, 5(9), 1087. doi:10.1364/optica.5.001087Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P., & Capmany, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express, 27(26), 38071. doi:10.1364/oe.27.038071Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643Mookherjea, S., & Yariv, A. (2002). Coupled resonator optical waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 8(3), 448-456. doi:10.1109/jstqe.2002.1016347Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (1992). Field-Programmable Gate Arrays. doi:10.1007/978-1-4615-3572-0Lee, E. K. F., & Gulak, P. G. (1992). Field programmable analogue array based on MOSFET transconductors. Electronics Letters, 28(1), 28-29. doi:10.1049/el:19920017Lee, E. K. F., & Gulak, P. G. (s. f.). A transconductor-based field-programmable analog array. Proceedings ISSCC ’95 - International Solid-State Circuits Conference. doi:10.1109/isscc.1995.535521Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., … Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457Song, M., Long, C. M., Wu, R., Seo, D., Leaird, D. E., & Weiner, A. M. (2011). Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 23(21), 1618-1620. doi:10.1109/lpt.2011.2165209Rudé, M., Pello, J., Simpson, R. E., Osmond, J., Roelkens, G., van der Tol, J. J. G. M., & Pruneri, V. (2013). Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Applied Physics Letters, 103(14), 141119. doi:10.1063/1.4824714Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551Edinger, P., Errando-Herranz, C., & Gylfason, K. B. (2019). Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/memsys.2019.8870616Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., … Bergman, K. (2018). Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform. Journal of Lightwave Technology, 36(3), 773-788. doi:10.1109/jlt.2017.2781131Cocorullo, G., Della Corte, F. G., Rendina, I., & Sarro, P. M. (1998). Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), 19-26. doi:10.1016/s0924-4247(98)00168-xZecevic, N., Hofbauer, M., & Zimmermann, H. (2015). Integrated Pulsewidth Modulation Control for a Scalable Optical Switch Matrix. IEEE Photonics Journal, 7(6), 1-7. doi:10.1109/jphot.2015.2506153Seok, T. J., Quack, N., Han, S., & Wu, M. C. (2015). 50×50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers. Optical Fiber Communication Conference. doi:10.1364/ofc.2015.m2b.4Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598. doi:10.1364/oe.18.023598Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y., & Englund, D. (2015). High-fidelity quantum state evolution in imperfect photonic integrated circuits. Physical Review A, 92(3). doi:10.1103/physreva.92.032322Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019Oton, C. J., Manganelli, C., Bontempi, F., Fournier, M., Fowler, D., & Kopp, C. (2016). Silicon photonic waveguide metrology using Mach-Zehnder interferometers. Optics Express, 24(6), 6265. doi:10.1364/oe.24.006265Chen, X., & Bogaerts, W. (2019). A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits. 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). doi:10.1109/phosst.2019.8795068Zibar, D., Wymeersch, H., & Lyubomirsky, I. (2017). Machine learning under the spotlight. Nature Photonics, 11(12), 749-751. doi:10.1038/s41566-017-0058-3Lopez, D. P. (2020). Programmable Integrated Silicon Photonics Waveguide Meshes: Optimized Designs and Control Algorithms. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-12. doi:10.1109/jstqe.2019.2948048Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218Poot, M., Schuck, C., Ma, X., Guo, X., & Tang, H. X. (2016). Design and characterization of integrated components for SiN photonic quantum circuits. Optics Express, 24(7), 6843. doi:10.1364/oe.24.006843Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Modal and polarization qubits in Ti:LiNbO_3 photonic circuits for a universal quantum logic gate. Optics Express, 18(19), 20475. doi:10.1364/oe.18.020475Harris, N. C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., … Englund, D. (2018). Linear programmable nanophotonic processors. Optica, 5(12), 1623. doi:10.1364/optica.5.001623Qiang, X., Zhou, X., Wang, J., Wilkes, C. M., Loke, T., O’Gara, S., … Matthews, J. C. F. (2018). Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics, 12(9), 534-539. doi:10.1038/s41566-018-0236-yLee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828Cheng, Q., Rumley, S., Bahadori, M., & Bergman, K. (2018). Photonic switching in high performance datacenters [Invited]. Optics Express, 26(12), 16022. doi:10.1364/oe.26.016022Wonfor, A., Wang, H., Penty, R. V., & White, I. H. (2011). Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]. Journal of Optical Communications and Networking, 3(8), A32. doi:10.1364/jocn.3.000a32Hamamoto, K., Anan, T., Komatsu, K., Sugimoto, M., & Mito, I. (1992). First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers. Electronics Letters, 28(5), 441. doi:10.1049/el:19920278Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020Dupuis, N., Lee, B. G., Rylyakov, A. V., Kuchta, D. M., Baks, C. W., Orcutt, J. S., … Schow, C. L. (2015). D
    corecore