2,594 research outputs found

    Acta Cybernetica : Volume 21. Number 2.

    Get PDF

    Testing timed systems modeled by stream X-machines

    Get PDF
    Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Distinguishing experiments for timed nondeterministic finite state machine

    Get PDF
    The problem of constructing distinguishing experiments is a fundamental problem in the area of finite state machines (FSMs), especially for FSM-based testing. In this paper, the problem is studied for timed nondeterministic FSMs (TFSMs) with output delays. Given two TFSMs, we derive the TFSM intersection of these machines and show that the machines can be distinguished using an appropriate (untimed) FSM abstraction of the TFSM intersection. The FSM abstraction is derived by constructing appropriate partitions for the input and output time domains of the TFSM intersection. Using the obtained abstraction, a traditional FSM-based preset algorithm can be used for deriving a separating sequence for the given TFSMs if these machines are separable. Moreover, as sometimes two non-separable TFSMs can still be distinguished by an adaptive experiment, based on the FSM abstraction we present an algorithm for deriving an r-distinguishing TFSM that represents a corresponding adaptive experiment

    Learning Moore Machines from Input-Output Traces

    Full text link
    The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in automata learning theory and practice. In this paper we study this problem for finite state machines with inputs and outputs, and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which transforms a set of input-output traces into an incomplete Moore machine and then completes the machine with self-loops; (2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata encoding a Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore machine using PTAP extended with state merging. We prove that MooreMI has the fundamental identification in the limit property. We also compare the algorithms experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. Finally, we compare with OSTIA, an algorithm that learns a more general class of transducers, and find that OSTIA generally does not learn a Moore machine, even when fed with a characteristic sample

    DNA ANALYSIS USING GRAMMATICAL INFERENCE

    Get PDF
    An accurate language definition capable of distinguishing between coding and non-coding DNA has important applications and analytical significance to the field of computational biology. The method proposed here uses positive sample grammatical inference and statistical information to infer languages for coding DNA. An algorithm is proposed for the searching of an optimal subset of input sequences for the inference of regular grammars by optimizing a relevant accuracy metric. The algorithm does not guarantee the finding of the optimal subset; however, testing shows improvement in accuracy and performance over the basis algorithm. Testing shows that the accuracy of inferred languages for components of DNA are consistently accurate. By using the proposed algorithm languages are inferred for coding DNA with average conditional probability over 80%. This reveals that languages for components of DNA can be inferred and are useful independent of the process that created them. These languages can then be analyzed or used for other tasks in computational biology. To illustrate potential applications of regular grammars for DNA components, an inferred language for exon sequences is applied as post processing to Hidden Markov exon prediction to reduce the number of wrong exons detected and improve the specificity of the model significantly
    • ā€¦
    corecore