68 research outputs found

    Robust Stabilization of Neutral Systems with Saturating Inputs

    Get PDF
    International audienceThis paper focuses on the stabilization problem of neutral systems in the presence of control saturation. Based on a descriptor approach and the use of a modified sector condition, global and local stabilization conditions are derived using Lyapunov-Krasovskii functionals. These conditions allow to consider systems presenting time-varying delays and are formulated directly as linear matrix inequalities (LMIs). Optimization problems are formulated with the aim of computing stabilizing state feedback control laws

    Stabilization of Neutral Systems with Saturating Control Inputs

    Get PDF
    International audienceThis paper focuses on the stabilization problem of neutral systems in the presence of time-varying delays and control saturation. Based on a descriptor approach and the use of a modified sector relation, global and local stabilization conditions are derived using Lyapunov-Krasovskii functionals. These conditions, formulated directly as linear matrix inequalities (LMIs), allow to relate the control law to be computed to a set of admissible initial conditions, for which the asymptotic and exponential stabilities of the closed-loop system are ensured. An extension of these conditions to the particular case of retarded systems is also provided. From the theoretical conditions, optimization problems with LMI constraints are therefore proposed to compute stabilizing state feedback gains with the aim of ensuring stability for a given set of admissible initial conditions or the global stability of the closed-loop system. A numerical example illustrates the application of the proposed results

    Robust sampled-data control: An input delay approach

    Get PDF
    International audienceA method for robust sampled-data stabilization of linear continuous-time systems is introduced. This method is based on the continuous-time model with time-varying input delay. Delay-dependent sufficient LMIs conditions for stabilization of systems with polytopic type uncertainty and for regional stabilization of systems with sampled-data saturated state-feedback are derived. The method may be applied to a wide spectrum of robust sampled-data control problems

    Robust H∞ Control of Takagi–Sugeno Systems with Actuator Saturation

    Get PDF
    Producción CientíficaThe robust static output feedback control for continuous-time Takagi–Sugeno systems subject to actuator saturation is solved here, including H∞ performance guarantees. Based on a polytopic model of the saturation, sufficient conditions are proposed for designing these controllers in terms of Linear Matrix Inequalities. With the aid of some special derivations, bilinear matrix inequalities are converted into a set of linear matrix inequalities which can be solved easily without requiring iterative algorithms or equality constraints, moreover, the output matrix of the considered system does not require to be full row rank. Finally, some examples are presented to show the validity of the proposed methodology

    Local stabilization of an unstable parabolic equation via saturated controls

    Full text link
    We derive a saturated feedback control, which locally stabilizes a linear reaction-diffusion equation. In contrast to most other works on this topic, we do not assume the Lyapunov stability of the uncontrolled system and consider general unstable systems. Using Lyapunov methods, we provide estimates for the region of attraction for the closed-loop system, given in terms of linear and bilinear matrix inequalities. We show that our results can be used with distributed as well as scalar boundary control, and with different types of saturations. The efficiency of the proposed method is demonstrated by means of numerical simulations

    Sampled-data control of linear systems subject to input saturation : a hybrid system approach

    Get PDF
    In this work, a new method for the stability analysis and synthesis of sampled-data control systems subject to variable sampling intervals and input saturation is proposed. From a hybrid systems representation, stability conditions based on quadratic clockdependent Lyapunov functions and the generalized sector condition to handle saturation are developed. These conditions are cast in semidefinite and sum-of-squares optimization problems to provide maximized estimates of the region of attraction, to estimate the maximum intersampling interval for which a region of stability is ensured, or to produce a stabilizing controller that results in a large implicit region of attraction, through the maximization of an estimate of it.Neste trabalho é proposto um novo método para a análise da estabilidade de sistemas de controle amostrados aperiodicamente e com saturação na entrada, e também para a síntese de controladores estabilizantes. A partir de uma representação por sistemas híbridos, condições de estabilidade baseadas em funções quadráticas de Lyapunov dependentes do clock e na condição de setor generalizada para o tratamento de saturação são desenvolvidas para o sistema amostrado em questão. Essas condições são incorporadas como restrições em problemas de otimização. Os problemas de otimização são baseados em programação semidefinida e em programação sum-of-squares, e têm o objetivo de obter estimativas maximizadas da região de atração do sistema, estimativas do intervalo de amostragem máximo para o qual uma dada região de estados iniciais seja uma região de estabilidade, ou para produzir controladores (dados por ganhos estáticos estabilizantes) que resultem em uma região de atração implicitamente grande, através da maximização da estimativa dessa região de atração

    robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations

    Get PDF
    Producción CientíficaStabilization of neutral systems with state delay is considered in the presence of uncertainty and input limitations in magnitude. The proposed solution is based on simultaneously characterizing a set of stabilizing controllers and the associated admissible initial conditions through the use of a free weighting matrix approach. From this mathematical characterization, state feedback gains that ensure a large set of admissible initial conditions are calculated by solving an optimization problem with LMI constraints. Some examples are presented to compare the results with previous approaches in the literature.MICINnn DPI2014-54530-

    Constrained control using convex optimization

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1997.Includes bibliographical references (p. 113-121).by John Marc Shewchun.M.S
    corecore