1,095 research outputs found

    Stabilization of Neutral Systems with Saturating Control Inputs

    Get PDF
    International audienceThis paper focuses on the stabilization problem of neutral systems in the presence of time-varying delays and control saturation. Based on a descriptor approach and the use of a modified sector relation, global and local stabilization conditions are derived using Lyapunov-Krasovskii functionals. These conditions, formulated directly as linear matrix inequalities (LMIs), allow to relate the control law to be computed to a set of admissible initial conditions, for which the asymptotic and exponential stabilities of the closed-loop system are ensured. An extension of these conditions to the particular case of retarded systems is also provided. From the theoretical conditions, optimization problems with LMI constraints are therefore proposed to compute stabilizing state feedback gains with the aim of ensuring stability for a given set of admissible initial conditions or the global stability of the closed-loop system. A numerical example illustrates the application of the proposed results

    Robust Stabilization of Neutral Systems with Saturating Inputs

    Get PDF
    International audienceThis paper focuses on the stabilization problem of neutral systems in the presence of control saturation. Based on a descriptor approach and the use of a modified sector condition, global and local stabilization conditions are derived using Lyapunov-Krasovskii functionals. These conditions allow to consider systems presenting time-varying delays and are formulated directly as linear matrix inequalities (LMIs). Optimization problems are formulated with the aim of computing stabilizing state feedback control laws

    Locally optimal controllers and globally inverse optimal controllers

    Full text link
    In this paper we consider the problem of global asymptotic stabilization with prescribed local behavior. We show that this problem can be formulated in terms of control Lyapunov functions. Moreover, we show that if the local control law has been synthesized employing a LQ approach, then the associated Lyapunov function can be seen as the value function of an optimal problem with some specific local properties. We illustrate these results on two specific classes of systems: backstepping and feedforward systems. Finally, we show how this framework can be employed when considering the orbital transfer problem

    Discontinuous stabilization of nonlinear systems:Quantized and switching controls

    Get PDF

    Stability and stabilization of sampled-data control for lure systems

    Get PDF
    Este trabalho apresenta um novo método para a análise de estabilidade e estabilização de sistemas do tipo Lure com controle amostrado, sujeitos a amostragem aperiódica e não linearidades que são limitadas em setor e restritas em derivada, em ambos contextos global e regional. Assume-se que os estados da planta estão disponíveis para medição e que as não linearidades são conhecidas, o que leva a uma formulação mais geral do problema. Os estados são adquiridos por um controlador digital que atualiza a entrada de controle em instantes de tempo discretos e aperiódicos, mantendo-a constante entre dois instantes sucessivos de amostragem. A abordagem apresentada neste trabalho é baseada no uso de uma nova classe de looped-functionals e em uma função do tipo Lure generalizada, que leva a condições de estabilidade e estabilização que são escritas na forma de desigualdades matriciais lineares (LMIs) e quasi-LMIs, respectivamente. Com base nestas condições, problemas de otimização são formulados com o objetivo de computar o intervalo máximo entre amostragens ou os limites máximos do setor para os quais a estabilidade assintótica da origem do sistema de dados amostrados em malha fechada é garantida. No caso em que as condições de setor são válidas apenas localmente, a solução desses problemas também fornece uma estimativa da região de atração para as trajetórias em tempo contínuo do sistema em malha fechada. Como as condições de síntese são quasi-LMIs, um algoritmo de otimização por enxame de partículas é proposto para lidar com as não linearidades envolvidas nos problemas de otimização, que surgem do produto de algumas variáveis de decisão. Exemplos numéricos são apresentados ao longo do trabalho para destacar as potencialidades do método.This work presents a new method for stability analysis and stabilization of sampleddata controlled Lure systems, subject to aperiodic sampling and nonlinearities that are sector bounded and slope restricted, in both global and regional contexts. We assume that the states of the plant are available for measurement and that the nonlinearities are known, which leads to a more general formulation of the problem. The states are acquired by a digital controller which updates the control input at aperiodic discrete-time instants, keeping it constant between successive sampling instants. The approach here presented is based on the use of a new class of looped-functionals and a generalized Luretype function, which leads to stability and stabilization conditions that are written in the form of Linear Matrix Inequalities (LMIs) and quasi-LMIs, respectively. On this basis, optimization problems are formulated aiming to compute the maximal intersampling interval or the maximal sector bounds for which the asymptotic stability of the origin of the sampled-data closed-loop system is guaranteed. In the case where the sector conditions hold only locally, the solution of these problems also provide an estimate of the region of attraction for the continuous-time trajectories of the closed-loop system. As the synthesis conditions are quasi-LMIs, a Particle Swarm Optimization (PSO) algorithm is proposed to deal with the involved nonlinearities in the optimization problems, which arise from the product of some decision variables. Numerical examples are presented throughout the work to highlight the potentialities of the method

    Lagrange Stabilization of Pendulum-like Systems: A Pseudo H-infinity Control Approach

    Full text link
    This paper studies the Lagrange stabilization of a class of nonlinear systems whose linear part has a singular system matrix and which have multiple periodic (in state) nonlinearities. Both state and output feedback Lagrange stabilization problems are considered. The paper develops a pseudo H-infinity control theory to solve these stabilization problems. In a similar fashion to the Strict Bounded Real Lemma in classic H-infinity control theory, a Pseudo Strict Bounded Real Lemma is established for systems with a single unstable pole. Sufficient conditions for the synthesis of state feedback and output feedback controllers are given to ensure that the closed-loop system is pseudo strict bounded real. The pseudo H-infinity control approach is applied to solve state feedback and output feedback Lagrange stabilization problems for nonlinear systems with multiple nonlinearities. An example is given to illustrate the proposed method

    Event-triggered control for rational and Lur’e type nonlinear systems

    Get PDF
    In the present work, the design of event-triggered controllers for two classes of nonlinear systems is addressed: rational systems and Lur’e type systems. Lyapunov theory techniques are used in both cases to derive asymptotic stability conditions in the form of linear matrix inequalities that are then used in convex optimization problems as means of computing the control system parameters aiming at a reduction of the number of events generated. In the context of rational systems, state-feedback control is considered and differentialalgebraic representations are used as means to obtain tractable stability conditions. An event-triggering strategy which uses weighting matrices to strive for less events is proposed and then it is proven that this strategy does not lead to Zeno behavior. In the case of Lur’e systems, observer-based state-feedback is addressed with event generators that have access only to the system output and observed state, but it imposes the need of a dwell-time, i.e. a time interval after each event where the trigger condition is not evaluated, to cope with Zeno behavior. Two distinct approaches, exact time-discretization and looped-functional techniques, are considered to ensure asymptotic stability in the presence of the dwell-time. For both system classes, emulation design and co-design are addressed. In the emulation design context, the control law (and the observer gains, when appropriate) are given and the task is to compute the event generator parameters. In the co-design context, the event generator and the control law or the observer can be simultaneously designed. Numerical examples are presented to illustrate the application of the proposed methods.Neste trabalho é abordado o projeto de controladores baseados em eventos para duas classes de sistemas não lineares: sistemas racionais e sistemas tipo Lur’e. Técnicas da teoria de Lyapunov são usadas em ambos os casos para derivar condições de estabilidade assintótica na forma de inequações matriciais lineares. Tais condições são então utilizadas em problemas de otimização convexa como meio de calcular os parâmetros do sistema de controle, visando uma redução no número de eventos gerados. No contexto de sistemas racionais, realimentação de estados é considerada e representações algébrico-diferenciais são usadas como meio de obter condições de estabilidade tratáveis computacionalmente. Uma estratégia de disparo de eventos que usa uma medida de erro ponderado através de matrizes definidas positivas é proposta e é demonstrado que tal estratégia não gera comportamento de Zenão. No caso de sistemas tipo Lur’e, considera-se o caso de controladores com restrições de informações, a saber, com acesso apenas às saídas do sistema. Um observador de estados é então utilizado para recuperar a informação faltante. Neste contexto, é necessária a introdução de um tempo de espera (dwell time, em inglês) para garantir a inexistência de comportamento de Zenão. Todavia, a introdução do tempo de espera apresenta um desafio adicional na garantia de estabilidade que é tratado neste trabalho considerando duas técnicas possíveis: a discretização exata do sistema e o uso de looped-functionals (funcionais em laço, em uma tradução livre). Para ambas classes de sistemas, são tratados os problemas de projeto por emulação e co-design (projeto simultâneo, em uma tradução livre). No projeto por emulação, a lei de controle (e os ganhos do observador, quando apropriado) são dados a priori e a tarefa é projetar os parâmetros do gerador de eventos. No caso do co-design, o gerador de eventos e a lei de controle ou o observador são projetados simultaneamente. Exemplos numéricos são usados para ilustrar a aplicação dos métodos propostos
    • …
    corecore