15,228 research outputs found

    Nanoplasmonic near-field synthesis

    Full text link
    The temporal response of resonances in nanoplasmonic structures typically converts an incoming few-cycle field into a much longer near-field at the spot where non-linear physical phenomena including electron emission, recollision and high-harmonic generation can take place. We show that for practically useful structures pulse shaping of the incoming pulse can be used to synthesize the plasmon-enhanced field and enable single-cycle driven nonlinear physical phenomena. Our method is demonstrated for the generation of an isolated attosecond pulse by plasmon-enhanced high harmonic generation. We furthermore show that optimal control techniques can be used even if the response of the plasmonic structure is not known a priori.Comment: 6 page

    Relaminarisation of Re_{\tau} = 100 channel flow with globally stabilising linear feedback control

    Full text link
    The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller's estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Reτ=100Re_\tau=100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl's theory of sheared turbulence

    Relaminarisation of Re_Ï„=100 channel flow with globally stabilising linear feedback control

    Get PDF
    The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller’s estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Re_τ = 100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl’s theory of sheared turbulence

    Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks

    Full text link
    Recently, the cycle-consistent generative adversarial networks (CycleGAN) has been widely used for synthesis of multi-domain medical images. The domain-specific nonlinear deformations captured by CycleGAN make the synthesized images difficult to be used for some applications, for example, generating pseudo-CT for PET-MR attenuation correction. This paper presents a deformation-invariant CycleGAN (DicycleGAN) method using deformable convolutional layers and new cycle-consistency losses. Its robustness dealing with data that suffer from domain-specific nonlinear deformations has been evaluated through comparison experiments performed on a multi-sequence brain MR dataset and a multi-modality abdominal dataset. Our method has displayed its ability to generate synthesized data that is aligned with the source while maintaining a proper quality of signal compared to CycleGAN-generated data. The proposed model also obtained comparable performance with CycleGAN when data from the source and target domains are alignable through simple affine transformations

    Nonlinear mechanisms in passive microwave devices

    Get PDF
    Premi extraordinari doctorat curs 2010-2011, àmbit d’Enginyeria de les TICThe telecommunications industry follows a tendency towards smaller devices, higher power and higher frequency, which imply an increase on the complexity of the electronics involved. Moreover, there is a need for extended capabilities like frequency tunable devices, ultra-low losses or high power handling, which make use of advanced materials for these purposes. In addition, increasingly demanding communication standards and regulations push the limits of the acceptable performance degrading indicators. This is the case of nonlinearities, whose effects, like increased Adjacent Channel Power Ratio (ACPR), harmonics, or intermodulation distortion among others, are being included in the performance requirements, as maximum tolerable levels. In this context, proper modeling of the devices at the design stage is of crucial importance in predicting not only the device performance but also the global system indicators and to make sure that the requirements are fulfilled. In accordance with that, this work proposes the necessary steps for circuit models implementation of different passive microwave devices, from the linear and nonlinear measurements to the simulations to validate them. Bulk acoustic wave resonators and transmission lines made of high temperature superconductors, ferroelectrics or regular metals and dielectrics are the subject of this work. Both phenomenological and physical approaches are considered and circuit models are proposed and compared with measurements. The nonlinear observables, being harmonics, intermodulation distortion, and saturation or detuning, are properly related to the material properties that originate them. The obtained models can be used in circuit simulators to predict the performance of these microwave devices under complex modulated signals, or even be used to predict their performance when integrated into more complex systems. A key step to achieve this goal is an accurate characterization of materials and devices, which is faced by making use of advanced measurement techniques. Therefore, considerations on special measurement setups are being made along this thesis.Award-winningPostprint (published version

    Generation of high-stability solitons at microwave rates on a silicon chip

    Get PDF
    Because they coherently link radio/microwave-rate electrical signals with optical-rate signals derived from lasers and atomic transitions, frequency combs are having a remarkably broad impact on science and technology. Integrating these systems on a photonic chip would revolutionize instrumentation, time keeping, spectroscopy, navigation and potentially create new mass-market applications. A key element of such a system-on-a-chip will be a mode-locked comb that can be self-referenced. The recent demonstration of soliton pulses from a microresonator has placed this goal within reach. However, to provide the requisite link between microwave and optical rate signals soliton generation must occur within the bandwidth of electronic devices. So far this is possible in crytalline devices, but not chip-based devices. Here, a monolithic comb that generates electronic-rate soliton pulses is demonstrated.Comment: Xu Yi, Qi-Fan Yang, Ki Youl Yang contributed equally to this wor

    Elimination of subharmonics in direct look-up table (DLT) sine wave reference generators for low-cost microprocessor-controlled inverters

    Get PDF
    This paper investigates distortion of an inverter reference waveform generated using a direct look-up (DLT) algorithm. The sources of various distortion components are identified and the implications for application to variable speed drives and grid connected inverters are described. Harmonic and subharmonic distortion mechanisms are analyzed, and compared with experimental results. Analytical methods are derived to determine the occurrence of subharmonics, their number, frequencies and maximum amplitudes. A relationship is established identifying a discrete set of synthesizable frequencies which avoid sub-harmonic distortion as a function of look-up table length and a practical method for calculation of the look-up table indices, based on finite length binary representation, is presented. Real time experimental results are presented to verify the analytical derivations

    A Natural Seismic Isolating System: The Buried Mangrove Effects

    Get PDF
    The Belleplaine test site, located in the island of Guadeloupe (French Lesser Antilles) includes a three-accelerometer vertical array, designed for liquefac- tion studies. The seismic response of the soil column at the test site is computed using three methods: the spectral ratio method using the vertical array data, a numerical method using the geotechnical properties of the soil column, and an operative fre- quency domain decomposition (FDD) modal analysis method. The Belleplaine test site is characterized by a mangrove layer overlaid by a stiff sandy deposit. This con- figuration is widely found at the border coast of the Caribbean region, which is exposed to high seismic hazard. We show that the buried mangrove layer plays the role of an isolation system equivalent to those usually employed in earthquake engineering aimed at reducing the seismic shear forces by reducing the internal stress within the structure. In our case, the flexibility of the mangrove layer reduces the distortion and the stress in the sandy upper layer, and consequently reduces the potential of liquefaction of the site
    • …
    corecore