1,030,022 research outputs found

    A holistic analysis method to assess the controllability of commercial buildings and their systems

    Get PDF
    This paper describes a novel design process for advanced MIMO (multiple inputs and multiple outputs) control system design and simulation for buildings. The paper describes the knowledge transfer from high technology disciplines such as aerospace flight control systems and the space industry to establish a three-step modelling and design process. In step 1, simplified, but holistic nonlinear and linearised dynamic models of the building and its systems is derived. This model is used to analyse the controllability of the building. In step 2, further synthesis of this model leads to the correct topology of the control system design. This is proved through the use of simulation using the simple building model. In step 3, the controller design is proved using a fully detailed building simulation such as ESP-r that acts as a type of virtual prototype of the building. The conclusions show that this design approach can help in the design of superior and more complex control systems especially for buildings designed with a Climate Adaptive Building (CAB) philosophy where many control inputs and outputs are used to control the building's temperature, concentration of CO2, humidity and lighting levels

    Model-Based Control Using Koopman Operators

    Full text link
    This paper explores the application of Koopman operator theory to the control of robotic systems. The operator is introduced as a method to generate data-driven models that have utility for model-based control methods. We then motivate the use of the Koopman operator towards augmenting model-based control. Specifically, we illustrate how the operator can be used to obtain a linearizable data-driven model for an unknown dynamical process that is useful for model-based control synthesis. Simulated results show that with increasing complexity in the choice of the basis functions, a closed-loop controller is able to invert and stabilize a cart- and VTOL-pendulum systems. Furthermore, the specification of the basis function are shown to be of importance when generating a Koopman operator for specific robotic systems. Experimental results with the Sphero SPRK robot explore the utility of the Koopman operator in a reduced state representation setting where increased complexity in the basis function improve open- and closed-loop controller performance in various terrains, including sand.Comment: 8 page

    Integrating process design and control: An application of optimal control to chemical processes

    Get PDF
    In this paper, the optimal design of process systems generically used in chemical industries is studied. The closely coupled nature of optimal design specification of the equipment, the determination of the optimal process parameters in steady-state, moreover, some issues of the application of optimal control is shown. The solution of the overall optimization problem including (i) optimal design of the equipment and (ii) specification of its optimal control strategy can be found relying on two different design concepts, namely, on the conventionally used sequential or, on the newly emerged simultaneous design approaches. This paper gives the theoretical background of the ideas and presents a comparative summary of the approaches. The two approaches are contrasted to each other in which the effects of the interaction of optimal process design and optimal control is highlighted. A new simultaneous optimization procedure providing economic and operability benefits over the traditional stand-alone approach is proposed. The applicability of the idea is demonstrated by means of a design study carried out for optimal design of a coaxial heat exchanger and a reactive distillation column for the synthesis of ethyl tert butyl ether (ETBE), relying on the benefits of the utilization of optimal control

    Business Process Redesign in the Perioperative Process: A Case Perspective for Digital Transformation

    Get PDF
    This case study investigates business process redesign within the perioperative process as a method to achieve digital transformation. Specific perioperative sub-processes are targeted for re-design and digitalization, which yield improvement. Based on a 184-month longitudinal study of a large 1,157 registered-bed academic medical center, the observed effects are viewed through a lens of information technology (IT) impact on core capabilities and core strategy to yield a digital transformation framework that supports patient-centric improvement across perioperative sub-processes. This research identifies existing limitations, potential capabilities, and subsequent contextual understanding to minimize perioperative process complexity, target opportunity for improvement, and ultimately yield improved capabilities. Dynamic technological activities of analysis, evaluation, and synthesis applied to specific perioperative patient-centric data collected within integrated hospital information systems yield the organizational resource for process management and control. Conclusions include theoretical and practical implications as well as study limitations
    • …
    corecore