162 research outputs found

    Iterative learning control of crystallisation systems

    Get PDF
    Under the increasing pressure of issues like reducing the time to market, managing lower production costs, and improving the flexibility of operation, batch process industries thrive towards the production of high value added commodity, i.e. specialty chemicals, pharmaceuticals, agricultural, and biotechnology enabled products. For better design, consistent operation and improved control of batch chemical processes one cannot ignore the sensing and computational blessings provided by modern sensors, computers, algorithms, and software. In addition, there is a growing demand for modelling and control tools based on process operating data. This study is focused on developing process operation data-based iterative learning control (ILC) strategies for batch processes, more specifically for batch crystallisation systems. In order to proceed, the research took a step backward to explore the existing control strategies, fundamentals, mechanisms, and various process analytical technology (PAT) tools used in batch crystallisation control. From the basics of the background study, an operating data-driven ILC approach was developed to improve the product quality from batch-to-batch. The concept of ILC is to exploit the repetitive nature of batch processes to automate recipe updating using process knowledge obtained from previous runs. The methodology stated here was based on the linear time varying (LTV) perturbation model in an ILC framework to provide a convergent batch-to-batch improvement of the process performance indicator. In an attempt to create uniqueness in the research, a novel hierarchical ILC (HILC) scheme was proposed for the systematic design of the supersaturation control (SSC) of a seeded batch cooling crystalliser. This model free control approach is implemented in a hierarchical structure by assigning data-driven supersaturation controller on the upper level and a simple temperature controller in the lower level. In order to familiarise with other data based control of crystallisation processes, the study rehearsed the existing direct nucleation control (DNC) approach. However, this part was more committed to perform a detailed strategic investigation of different possible structures of DNC and to compare the results with that of a first principle model based optimisation for the very first time. The DNC results in fact outperformed the model based optimisation approach and established an ultimate guideline to select the preferable DNC structure. Batch chemical processes are distributed as well as nonlinear in nature which need to be operated over a wide range of operating conditions and often near the boundary of the admissible region. As the linear lumped model predictive controllers (MPCs) often subject to severe performance limitations, there is a growing demand of simple data driven nonlinear control strategy to control batch crystallisers that will consider the spatio-temporal aspects. In this study, an operating data-driven polynomial chaos expansion (PCE) based nonlinear surrogate modelling and optimisation strategy was presented for batch crystallisation processes. Model validation and optimisation results confirmed this approach as a promise to nonlinear control. The evaluations of the proposed data based methodologies were carried out by simulation case studies, laboratory experiments and industrial pilot plant experiments. For all the simulation case studies a detailed mathematical models covering reaction kinetics and heat mass balances were developed for a batch cooling crystallisation system of Paracetamol in water. Based on these models, rigorous simulation programs were developed in MATLABยฎ, which was then treated as the real batch cooling crystallisation system. The laboratory experimental works were carried out using a lab scale system of Paracetamol and iso-Propyl alcohol (IPA). All the experimental works including the qualitative and quantitative monitoring of the crystallisation experiments and products demonstrated an inclusive application of various in situ process analytical technology (PAT) tools, such as focused beam reflectance measurement (FBRM), UV/Vis spectroscopy and particle vision measurement (PVM) as well. The industrial pilot scale study was carried out in GlaxoSmithKline Bangladesh Limited, Bangladesh, and the system of experiments was Paracetamol and other powdered excipients used to make paracetamol tablets. The methodologies presented in this thesis provide a comprehensive framework for data-based dynamic optimisation and control of crystallisation processes. All the simulation and experimental evaluations of the proposed approaches emphasised the potential of the data-driven techniques to provide considerable advances in the current state-of-the-art in crystallisation control

    LCCC Workshop on Process Control

    Get PDF

    ํŠน์ • ์ ์˜ ์ถ”์ ์„ ์œ„ํ•œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ƒˆ๋กœ์šด ๋ฐ˜๋ณตํ•™์Šต์ œ์–ด ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2017. 2. ์ด์ข…๋ฏผ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ฝ์กฐ๊ฑด์ด ์žˆ๋Š” ๋‹ค๋ณ€์ˆ˜ ํšŒ๋ถ„์‹ ๊ณต์ •์˜ ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋ฐ˜๋ณตํ•™์Šต์ œ์–ด(Iterative learning control, ILC)์™€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(Model predictive control, MPC)๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ˜๋ณตํ•™์Šต ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(Iterative learning model predictive control, ILMPC)๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ผ๋ฐ˜์ ์ธ ILC๋Š” ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ์žˆ๋”๋ผ๋„ ์ด์ „ ํšŒ๋ถ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•ด ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ถœ๋ ฅ์„ ๊ธฐ์ค€๊ถค์ ์— ์ˆ˜๋ ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ๋ณธ์ ์œผ๋กœ ๊ฐœ๋ฃจํ”„ ์ œ์–ด์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์‹œ๊ฐ„ ์™ธ๋ž€์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋‹ค. MPC๋Š” ์ด์ „ ํšŒ๋ถ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋“  ํšŒ๋ถ„์—์„œ ๋™์ผํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ๋ชจ๋ธ์˜ ์ •ํ™•๋„์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ILC์™€ MPC์˜ ๋ชจ๋“  ์žฅ์ ์„ ํฌํ•จํ•˜๋Š” ILMPC๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋งŽ์€ ํšŒ๋ถ„์‹ ๋˜๋Š” ๋ฐ˜๋ณต ๊ณต์ •์—์„œ ์ถœ๋ ฅ์€ ๋ชจ๋“  ์‹œ๊ฐ„์—์„œ์˜ ๊ธฐ์ค€๊ถค์ ์„ ์ถ”์ ํ•  ํ•„์š”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์›ํ•˜๋Š” ์ ์—๋งŒ ์ˆ˜๋ ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ILMPC ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์›ํ•˜๋Š” ์ ์„ ์ง€๋‚˜๋Š” ๊ธฐ์ค€๊ถค์ ์„ ๋งŒ๋“œ๋Š” ๊ณผ์ •์ด ํ•„์š” ์—†๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ ์ ๋Œ€์  ์ถ”์ , ๋ฐ˜๋ณต ํ•™์Šต, ์ œ์•ฝ์กฐ๊ฑด, ์‹ค์‹œ๊ฐ„ ์™ธ๋ž€ ์ œ๊ฑฐ ๋“ฑ์˜ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์˜ˆ์ œ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.In this thesis, we study an iterative learning control (ILC) technique combined with model predictive control (MPC), called the iterative learning model predictive control (ILMPC), for constrained multivariable control of batch processes. Although the general ILC makes the outputs converge to reference trajectories under model uncertainty, it uses open-loop control within a batchthus, it cannot reject real-time disturbances. The MPC algorithm shows identical performance for all batches, and it highly depends on model quality because it does not use previous batch information. We integrate the advantages of the two algorithms. In many batch or repetitive processes, the output does not need to track all points of a reference trajectory. We propose a novel ILMPC method which can only consider the desired reference points, not an entire reference trajectory. It does not require to generate a reference trajectory which passes through the specific desired points. Numerical examples are provided to demonstrate the performances of the suggested approach on point-to-point tracking, iterative learning, constraints handling, and real-time disturbance rejection.1. Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 4 1.2.1 Iterative Learning Control 4 1.2.2 Iterative Learning Control Combined with Model Predictive Control 15 1.2.3 Iterative Learning Control for Point-to-Point Tracking 17 1.3 Major Contributions of This Thesis 18 1.4 Outline of This Thesis 19 2. Iterative Learning Control Combined with Model Predictive Control 22 2.1 Introduction 22 2.2 Prediction Model for Iterative Learning Model Predictive Control 25 2.2.1 Incremental State-Space Model 25 2.2.2 Prediction Model 30 2.3 Iterative Learning Model Predictive Controller 34 2.3.1 Unconstrained ILMPC 34 2.3.2 Constrained ILMPC 35 2.3.3 Convergence Property 37 2.3.4 Extension for Disturbance Model 42 2.4 Numerical Illustrations 44 2.4.1 (Case 1) Unconstrained and Constrained Linear SISO System 45 2.4.2 (Case 2) Constrained Linear MIMO System 49 2.4.3 (Case 3) Nonlinear Batch Reactor 53 2.5 Conclusion 59 3. Iterative Learning Control Combined with Model Predictive Control for Non-Zero Convergence 60 3.1 Iterative Learning Model Predictive Controller for Nonzero Convergence 60 3.2 Convergence Analysis 63 3.2.1 Convergence Analysis for an Input Trajectory 63 3.2.2 Convergence Analysis for an Output Error 65 3.3 Illustrative Example 71 3.4 Conclusions 75 4. Iterative Learning Control Combined with Model Predictive Control for Tracking Specific Points 77 4.1 Introduction 77 4.2 Point-to-Point Iterative Learning Model Predictive Control 79 4.2.1 Extraction Matrix Formulation 79 4.2.2 Constrained PTP ILMPC 82 4.2.3 Iterative Learning Observer 86 4.3 Convergence Analysis 89 4.3.1 Convergence of Input Trajectory 89 4.3.2 Convergence of Error 95 4.4 Numerical Examples 98 4.4.1 Example 1 (Linear SISO System with Disturbance) 98 4.4.2 Example 2 (Linear SISO System) 104 4.4.3 Example 3 (Comparison between the Proposed PTP ILMPC and PTP ILC) 107 4.4.4 Example 4 (Nonlinear Semi-Batch Reactor) 113 4.5 Conclusion 119 5. Stochastic Iterative Learning Control for Batch-varying Reference Trajectory 120 5.1 Introduction 121 5.2 ILC for Batch-Varying Reference Trajectories 123 5.2.1 Convergence Property for ILC with Batch-Varying Reference Trajectories 123 5.2.2 Iterative Learning Identification 126 5.2.3 Deterministic ILC Controller for Batch-Varying Reference Trajectories 129 5.3 ILC for LTI Stochastic System with Batch-Varying Reference Trajectories 132 5.3.1 Approach1: Batch-Domain Kalman Filter-Based Approach 133 5.3.2 Approach2: Time-Domain Kalman Filter-Based Approach 137 5.4 Numerical Examples 141 5.4.1 Example 1 (Random Reference Trajectories 141 5.4.2 Example 2 (Particular Types of Reference Trajectories 149 5.5 Conclusion 151 6. Conclusions and Future Works 156 6.1 Conclusions 156 6.2 Future work 157 Bibliography 158 ์ดˆ๋ก 170Docto

    Automated Optimization of Broiler Production

    Get PDF
    • โ€ฆ
    corecore