2,901 research outputs found

    Simulator Semantics for System Level Formal Verification

    Get PDF
    Many simulation based Bounded Model Checking approaches to System Level Formal Verification (SLFV) have been devised. Typically such approaches exploit the capability of simulators to save computation time by saving and restoring the state of the system under simulation. However, even though such approaches aim to (bounded) formal verification, as a matter of fact, the simulator behaviour is not formally modelled and the proof of correctness of the proposed approaches basically relies on the intuitive notion of simulator behaviour. This gap makes it hard to check if the optimisations introduced to speed up the simulation do not actually omit checking relevant behaviours of the system under verification. The aim of this paper is to fill the above gap by presenting a formal semantics for simulators.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Automatic Derivation of Abstract Semantics From Instruction Set Descriptions

    Get PDF
    Abstracted semantics of instructions of processor-based architectures are an invaluable asset for several formal verification techniques, such as software model checking and static analysis. In the field of model checking, abstract versions of instructions can help counter the state explosion problem, for instance by replacing explicit values by symbolic representations of sets of values. Similar to this, static analyses often operate on an abstract domain in order to reduce complexity, guarantee termination, or both. Hence, for a given microcontroller, the task at hand is to find such abstractions. Due to the large number of available microcontrollers, some of which are even created for specific applications, it is impracticable to rely on human developers to perform this step. Therefore, we propose a technique that starts from imperative descriptions of instructions, which allows to automate most of the process

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table
    • …
    corecore