8,270 research outputs found

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.
&#xa

    No Pitch Left Behind: Addressing Gender Unbalance in Automatic Speech Recognition through Pitch Manipulation

    Full text link
    Automatic speech recognition (ASR) systems are known to be sensitive to the sociolinguistic variability of speech data, in which gender plays a crucial role. This can result in disparities in recognition accuracy between male and female speakers, primarily due to the under-representation of the latter group in the training data. While in the context of hybrid ASR models several solutions have been proposed, the gender bias issue has not been explicitly addressed in end-to-end neural architectures. To fill this gap, we propose a data augmentation technique that manipulates the fundamental frequency (f0) and formants. This technique reduces the data unbalance among genders by simulating voices of the under-represented female speakers and increases the variability within each gender group. Experiments on spontaneous English speech show that our technique yields a relative WER improvement up to 9.87% for utterances by female speakers, with larger gains for the least-represented f0 ranges.Comment: Accepted at ASRU 202

    Complex trauma: A composite case study exploring responses to complex trauma across a lifespan

    Get PDF

    Psychiatry beyond the brain: externalism, mental health, and autistic spectrum disorder

    Get PDF
    Externalist theories hold that a comprehensive understanding of mental disorder cannot be achieved unless we attend to factors that lie outside of the head: neural explanations alone will not fully capture the complex dependencies that exist between an individual’s psychiatric condition and her social, cultural, and material environment. Here, we firstly offer a taxonomy of ways in which the externalist viewpoint can be understood, and unpack its commitments concerning the nature and physical realization of mental disorder. Secondly, we apply a strongly externalist approach to the case of Autistic Spectrum Disorder, and argue that this condition can be illuminated by appeal to the hypothesis of extended cognition. We conclude by briefly considering the significance this strongly externalist approach may have for psychiatric practice and pedagogy

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Personalising synthetic voices for individuals with severe speech impairment.

    Get PDF
    Speech technology can help individuals with speech disorders to interact more easily. Many individuals with severe speech impairment, due to conditions such as Parkinson's disease or motor neurone disease, use voice output communication aids (VOCAs), which have synthesised or pre-recorded voice output. This voice output effectively becomes the voice of the individual and should therefore represent the user accurately. Currently available personalisation of speech synthesis techniques require a large amount of data input, which is difficult to produce for individuals with severe speech impairment. These techniques also do not provide a solution for those individuals whose voices have begun to show the effects of dysarthria. The thesis shows that Hidden Markov Model (HMM)-based speech synthesis is a promising approach for 'voice banking' for individuals before their condition causes deterioration of the speech and once deterioration has begun. Data input requirements for building personalised voices with this technique using human listener judgement evaluation is investigated. It shows that 100 sentences is the minimum required to build a significantly different voice from an average voice model and show some resemblance to the target speaker. This amount depends on the speaker and the average model used. A neural network analysis trained on extracted acoustic features revealed that spectral features had the most influence for predicting human listener judgements of similarity of synthesised speech to a target speaker. Accuracy of prediction significantly improves if other acoustic features are introduced and combined non-linearly. These results were used to inform the reconstruction of personalised synthetic voices for speakers whose voices had begun to show the effects of their conditions. Using HMM-based synthesis, personalised synthetic voices were built using dysarthric speech showing similarity to target speakers without recreating the impairment in the synthesised speech output
    • 

    corecore