3,253 research outputs found

    Zinc–Acetate–Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity

    Get PDF
    Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)2(amine)x] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21–45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)2(hydrazine)2] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency

    Zinc–Acetate–Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity

    Get PDF
    Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)2(amine)x] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21–45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)2(hydrazine)2] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency

    Synthesis of Zinc Ferrites in RF Thermal Plasma Reactor

    Get PDF
    Formation of nanosized zinc ferrite spinels was studied from iron- and zinc oxide powders and corresponding nitrate solutions, respectively in a radiofrequency thermal plasma reactor. From the viewpoint of applications, the research was motivated by the potential use of these materials in advanced magnetic devices on the one hand, and by their biomedical applications such as drug carriers or agents for cancer treatment by hyperthermia on the other. In this work effects of synthesis conditions on properties of products were studied in details. The products were characterised for chemical composition, phase conditions, particle size distribution, morphologies and saturation magnetisation. Most products exhibited ferrimagnetic behaviour. Correlations among domain- and particle sizes were also investigated. Conditions for the synthesis of nanosized, inverse zinc ferrites of high saturation magnetisation were established. It was proved that in thermal plasma conditions normal and inverse ferrites could be produced in a single step process

    Mechanism of reduced sintering temperature of Al2O3–ZrO2 nanocomposites obtained by microwave hydrothermal synthesis

    Get PDF
    A novel method to obtain Al2O3–ZrO2 nanocomposites is presented. It consists of the co-precipitation step of boehmite (AlO(OH)) and ZrO2, followed by microwave hydrothermal treatment at 270 °C and 60 MPa, and by calcination at 600 °C. Using this method, we obtained two nanocomposites: Al2O3–20 wt % ZrO2 and Al2O3–40 wt % ZrO2. Nanocomposites were characterized by Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. Sintering behavior and thermal expansion coefficients were investigated during dilatometric tests. The sintering temperatures of the nanocomposites were 1209 °C and 1231 °C, respectively—approximately 100 °C lower than reported for such composites. We attribute the decrease of the sintering temperature to the specific nanostructure obtained using microwave hydrothermal treatment instead of conventional calcination. Microwave hydrothermal treatment resulted in a fine distribution of intermixed highly crystalline nanoparticles of boehmite and zirconia. Such intermixing prevented particle growth, which is a factor reducing sintering temperature. Further, due to reduced grain growth, stability of the ξ-Al2O3 phase was extended up to 1200 °C, which enhances the sintering process as well. For the Al2O3–20 wt % ZrO2 composition, we observed stability of the zirconia tetragonal phase up to 1400 °C. We associate this stability with the mutual separation of zirconia nanoparticles in the alumina matrix

    Review on sol-gel synthesis of perovskite and oxide nanomaterials

    Get PDF
    Altres ajuts: this work has been partially financed by the CERCA Programme/Generalitat de Catalunya.Sol-Gel is a low cost, well-established and flexible synthetic route to produce a wide range of micro- and nanostructures. Small variations in pH, temperature, precursors, time, pressure, atmosphere, among others, can lead to a wide family of compounds that share the same molecular structures. In this work, we present a general review of the synthesis of LaMnO, SrTiO, BaTiO perovskites and zinc vanadium oxides nanostructures based on Sol-Gel method. We discuss how small changes in the parameters of the synthesis can modify the morphology, shape, size, homogeneity, aggregation, among others, of the products. We also discuss the different precursors, solvents, working temperature, reaction times used throughout the synthesis. In the last section, we present novel uses of Sol-Gel with organic materials with emphasis on carbon-based compounds. All with a perspective to improve the method for future applications in different technological fields

    Al-doped ZnO ceramic sputtering targets based on nanocrystalline powders produced by emulsion detonation synthesis – deposition and application as a transparent conductive oxide material

    Get PDF
    Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the filmÂŽs properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices

    Aerosol route in processing of nanostructured functional materials

    Get PDF
    The diversity and potentials of the aerosol route for making functional materials at the nano size level are reviewed. Among the methods currently used for nanophase processing, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex powders with controlled stoichiometry, chemical and phase content provided by high surface reaction, high heating and cooling rates and short residence time. It represents a "bottom-up" chemical approach and provides control over a variety of important parameters for particle processing. This may favors to the formation of either amorphous, nanocrystalline or metastable phases implying a huge impact in the search for advanced functional materials having novel and unique structures and properties. Particularly, the opportunities of the hot wall aerosol synthesis, i.e. spray pyrolysis, for the generation of ultrafine spherical particles with uniformly distributed components, phases and nano-clustered inner structure and luminescence properties is demonstrated with various analyzing tecniques like XRPD, FE-SEM, HR-TEM, STEM and nanotomography. Following the initial attempts, a more detailed aspect of the several phosphor particles generation based on Gd2O3:Eu, Y2O3:Eu, (Y1-xGdx)2O3:Eu and Y3Al5O12:Ce is reviewed highlighting the research activities in the Institute of Technical Sciences of SASA, Serbia. © 2009 Hosokawa Powder Technology Foundation

    Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High-TC Ferromagnetic Nanocrystalline Thin Films

    Get PDF
    We report the synthesis of colloidal Mn2+-doped ZnO (Mn2+:ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn2+:ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)2 was found to strongly inhibit oxidation of Mn2+ by O2, allowing the synthesis of Mn2+:ZnO to be performed aerobically. Mn2+ ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn2+:ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn2+ with very homogeneous speciation, differing from bulk Mn2+:ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 Bohr magneton/Mn2+ and TC > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn2+:ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.Comment: To be published in the Journal of the American Chemical Society Web on July 14, 2004 (http://dx.doi.org/10.1021/ja048427j
    • 

    corecore