42 research outputs found

    Electrochemically Engineering of Nanoporous Materials

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. Electrochemical engineering of nanoporous materials is a cost-effective and facile synthesis approach that enables the production of a range of nanoscale materials with controllable dimensions and properties. Recent decades have witnessed extensive research activity into the advanced engineering of nanoporous materials, from fundamental studies to applied science. These nanomaterials offer a set of unique and exclusive advantages for a wealth of applications, including catalysis, energy storage and harvesting, electronics, photonics, sensing, templates, and membranes. This Special Issue is dedicated to recent research advances in electrochemical engineering of nanoporous materials and their application across several disciplines and research fields. The broad and interdisciplinary applicability of these nanomaterials will be of profound and immediate interest for a broad audience, ranging from physicists, chemists, engineers, materials scientists, bioengineers, and nanomedicine experts

    Advanced Materials in 3D/4D Printing Technology

    Get PDF
    This reprint contains a collection of state-of-the-art reviews and original research articles from leaders in the field of 3D/4D printing. It focuses on 3D/4D printing materials with novel and/or advanced functionalities, novel applications of 3DP material, and material synthesis and characterization techniques

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF

    Thermal Performance, Solar Energy Storage and Conversion of Graphene/OPCM Systems

    Full text link
    Phase change materials (PCM) have substantial advantages in the field of energy conversion and storage because of the high energy density and constant phase change temperature. One of the widely used branches is organic phase change materials (OPCM), and the main property of OPCM is absorbing and releasing thermal energy, making them ideal for application in many fields, such as thermal management, energy conversion, and energy storage. OPCM are, however, limited by its leakage problem during solid-liquid phase change, its poor solar absorption ability, and its low electrical and thermal conductivity. Therefore, we address the above issues by introducing graphene derivatives, such as graphene nanoplatelets and graphene oxide, which acquires great properties, including high electrical and thermal conductivities. It is considered that, as a 2D material, covalent sp2 bonding of graphene derivatives leads to high in-plane thermal conductivity, and the resulting orbitals can cause the free mobility of electrons in the materials, allowing it to conduct electricity. In this research, we establish two graphene/OPCM systems with two different composite structures, microcapsules and 3D matrixes. The additional materials contribute thermal and electrical conductivity of the system leading to great potential for energy storage and conversion applications. This thesis consists of six sections, the outline of each section is summarised as follows, Chapter 1 introduces the basic information of graphene derivatives and OPCM of this project. Chapter 2 further explores the graphene/OPCM system and summarise the synthesis methods and application experiments of other researchers’ works on the encapsulation of PCM with graphene derivatives. Chapter 3 aggregates all methodologies used for two different graphene/OPCM systems in this project. Chapter 4 describes in detail the synthesis procedures of the graphene/OPCM system in microcapsules and 3D structure, respectively. Chapter 5 presents all the instinctive properties of the resulting samples of graphene/OPCM system and investigates the thermal energy storage and energy conversion abilities in the application scenarios. Chapter 6 concludes this research of the graphene/OPCM system and envision the future works of graphene/OPCM system

    Production and processing of graphene and related materials

    Get PDF
    © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown
    corecore