24 research outputs found

    Silver Nanoparticles

    Get PDF

    Silver nanoparticles green synthesis: A mini review

    Get PDF
    Nanotechnology is a significant field of contemporary research dealing with design, synthesis, and manipulation of particle structures ranging from in the region of 1-100 nm. Nanoparticles (NPs) have broad choice of applications in areas such as fitness care, cosmetics, foodstuff and feed, environmental health, mechanics, optics, biomedical sciences, chemical industries, electronics, space industries, drug-gene delivery, energy science, optoelectronics, catalysis, single electron transistors, light emitters, nonlinear optical devices, and photo-electrochemical applications. Nano Biotechnology is a speedily mounting scientific field of producing and constructing devices, an important area of research in nano biotechnology is the synthesis of NPs with different chemical compositions, sizes and morphologies, and controlled dispersities. Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This assessment presents a general idea of silver nanoparticle preparation. The aim of this analysis article is, therefore, to replicate on the existing state and potential prediction, especially the potentials and limitations of the above mentioned techniques for industries

    Localized Surface Plasmon Resonance Property of Ag-Nanoparticles and Prospects as Imminent Multi-Functional Colorant

    Get PDF
    1.   Hauser PJ, Tabba AH. Improving the environmental and economic aspects of cotton dyeing using a cationised cotton†. Coloration Technology. 2001, 117:282-2882.   Lewis DM, Lei X. Improved cellulose dyeability by chemical modification of the fiber. Textile Chemist Colorist. 1989, 213.   Şen S, Demirer G. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research. 2003, 37:1868-18784.   Mittal A, Kaur D, Malviya A, Mittal J, Gupta V. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science. 2009, 337:345-3545.   Knapp J, Newby P. The decolourisation of a chemical industry effluent by white rot fungi. Water Research. 1999, 33:575-5776.   Cavaco SA, Fernandes S, Quina MM, Ferreira LM. Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of Hazardous Materials. 2007, 144:634-6387.   Li X-q, Brown DG, Zhang W-x. Stabilization of biosolids with nanoscale zero-valent iron (nzvi). Journal of nanoparticle research. 2007, 9:233-2438.   Gupta V, Agarwal S, Saleh TA. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water research. 2011, 45:2207-22129.   Noroozi B, Arami M, Bahrami S. Investigation on the capability of silkworm pupa as a natural adsorbent for removal of dyes from textile effluent. Iranian Journal of chemical engineering. 2004, 110. Yilmaz AE, Boncukcuoğlu R, Kocakerim M, Karakaş İH. Waste utilization: The removal of textile dye (bomaplex red cr-l) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination. 2011, 277:156-16311. Verschuren J, Van Herzele P, De Clerck K, Kiekens P. Influence of fiber surface purity on wicking properties of needle-punched nonwoven after oxygen plasma treatment. Textile research journal. 2005, 75:437-44112. Khatri Z, Memon MH, Khatri A, Tanwari A. Cold pad-batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy. Ultrasonics sonochemistry. 2011, 18:1301-130713. Bhat N, Netravali A, Gore A, Sathianarayanan M, Arolkar G, Deshmukh R. Surface modification of cotton fabrics using plasma technology. Textile Research Journal. 2011:004051751039757414. Wang B, Li L, Zheng Y. In vitro cytotoxicity and hemocompatibility studies of ti-nb, ti-nb-zr and ti-nb-hf biomedical shape memory alloys. Biomedical Materials. 2010, 5:04410215. Ahmed NS, El-Shishtawy RM. The use of new technologies in coloration of textile fibers. Journal of Materials Science. 2010, 45:1143-115316. Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP. Single-molecule surface-enhanced raman spectroscopy of crystal violet isotopologues: Theory and experiment. Journal of the American Chemical Society. 2011, 133:4115-412217. Aslan K, Wu M, Lakowicz JR, Geddes CD. Fluorescent core-shell ag@ sio2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. Journal of the American Chemical Society. 2007, 129:1524-152518. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006, 1:219-22819. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. Lspr-based nanobiosensors. Nano Today. 2009, 4:244-25120. Pyayt AL, Wiley B, Xia Y, Chen A, Dalton L. Integration of photonic and silver nanowire plasmonic waveguides. Nature nanotechnology. 2008, 3:660-66521. Rang M, Jones AC, Zhou F, Li Z-Y, Wiley BJ, Xia Y, Raschke MB. Optical near-field mapping of plasmonic nanoprisms. Nano letters. 2008, 8:3357-336322. Asharani P, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008, 19:25510223. Božanić D, Djoković V, Blanuša J, Nair P, Georges M, Radhakrishnan T. Preparation and properties of nano-sized ag and ag2s particles in biopolymer matrix. The European Physical Journal E. 2007, 22:51-5924. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. 2003, 107:668-67725. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano letters. 2005, 5:2034-203826. Haynes CL, Van Duyne RP. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B. 2001, 105:5599-561127. Link S, Wang ZL, El-Sayed M. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. The Journal of Physical Chemistry B. 1999, 103:3529-353328. Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters. 2003, 3:485-49129. Hu M, Chen J, Marquez M, Xia Y, Hartland GV. Correlated rayleigh scattering spectroscopy and scanning electron microscopy studies of au-ag bimetallic nanoboxes and nanocages. The Journal of Physical Chemistry C. 2007, 111:12558-1256530. Zhao L, Kelly KL, Schatz GC. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. The Journal of Physical Chemistry B. 2003, 107:7343-735031. Shih C-M, Shieh Y-T, Twu Y-K. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydrate Polymers. 2009, 78:309-31532. Sun C, Qu R, Chen H, Ji C, Wang C, Sun Y, Wang B. Degradation behavior of chitosan chains in the ‘green’synthesis of gold nanoparticles. Carbohydrate research. 2008, 343:2595-259933. Miyama T, Yonezawa Y. Photoinduced formation and aggregation of silver nanoparticles at the surface of carboxymethylcellulose films. Journal of Nanoparticle Research. 2004, 6:457-46534. Salata OV. Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology. 2004, 2:135. Barber D, Freestone I. An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy. Archaeometry. 1990, 32:33-4536. Katayama S, Zhao L, Yonezawa S, Iwai Y. Modification of the surface of cotton with supercritical carbon dioxide and water to support nanoparticles. The Journal of Supercritical Fluids. 2012, 61:199-20537. Cristea D, Vilarem G. Improving light fastness of natural dyes on cotton yarn. Dyes and pigments. 2006, 70:238-24538. Oda H. Improving light fastness of natural dye: Photostabilisation of gardenia blue. Coloration technology. 2012, 128:68-7339. Shahid M, Mohammad F. Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers a review. Industrial Engineering Chemistry Research. 2013, 52:5245-526040. Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in pharmaceutical sciences. 2014, 9:38541. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012, 2:1-1042. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chemical reviews. 2013, 113:4708-475443. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine. 2016, 12:789-79944. Goia DV, Matijević E. Preparation of monodispersed metal particles. New Journal of Chemistry. 1998, 22:1203-121545. Adair J, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham D, Ludwig M, Wang L. Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles. Materials Science and Engineering: R: Reports. 1998, 23:139-24246. Adair JH, Suvaci E. Morphological control of particles. Current opinion in colloid interface science. 2000, 5:160-16747. Mayer AB, Hausner SH, Mark JE. Colloidal silver nanoparticles generated in the presence of protective cationic polyelectrolytes. Polymer journal. 2000, 32:15-2248. Chou K-S, Ren C-Y. Synthesis of nanosized silver particles by chemical reduction method. Materials Chemistry and Physics. 2000, 64:241-24649. Hachisu S. Phase transition in monodisperse gold sol. Microscopic observation of gas, liquid and solid states. Croatica chemica acta. 1998, 71:975-98150. Taleb A, Petit C, Pileni M. Synthesis of highly monodisperse silver nanoparticles from aot reverse micelles: A way to 2d and 3d self-organization. Chemistry of Materials. 1997, 9:950-95951. Egorova E, Revina A. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 168:87-9652. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B. 2000, 104:9683-968853. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir. 2000, 16:6396-639954. Matijevic E. Preparation and properties of uniform size colloids. Chemistry of materials. 1993, 5:412-42655. Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges. langmuir. 1994, 10:8-1656. Mulvaney P, Giersig M, Henglein A. Electrochemistry of multilayer colloids: Preparation and absorption spectrum of gold-coated silver particles. The Journal of Physical Chemistry. 1993, 97:7061-706457. Torigoe K, Nakajima Y, Esumi K. Preparation and characterization of colloidal silver-platinum alloys. The Journal of Physical Chemistry. 1993, 97:8304-830958. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B. 1999, 103:8410-842659. Lee J-W, Park S-B, Lee H. Densities, surface tensions, and refractive indices of the water+ 1, 3-propanediol system. Journal of Chemical Engineering Data. 2000, 45:166-16860. Henglein A, Giersig M. Formation of colloidal silver nanoparticles: Capping action of citrate. The Journal of Physical Chemistry B. 1999, 103:9533-953961. Wang W, Efrima S, Regev O. Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir. 1998, 14:602-61062. Bright RM, Musick MD, Natan MJ. Preparation and characterization of ag colloid monolayers. Langmuir. 1998, 14:5695-570163. Liz-Marzán LM, Lado-Tourino I. Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir. 1996, 12:3585-358964. Abdel-Mohsen A, Hrdina R, Burgert L, Krylová G, Abdel-Rahman RM, Krejčová A, Steinhart M, Beneš L. Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydrate polymers. 2012, 89:411-42265. Abdel-Mohsen A, Abdel-Rahman RM, Fouda MM, Vojtova L, Uhrova L, Hassan A, Al-Deyab SS, El-Shamy IE, Jancar J. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydrate polymers. 2014, 102:238-24566. Bois L, Chassagneux F, Parola S, Bessueille F, Battie Y, Destouches N, Boukenter A, Moncoffre N, Toulhoat N. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer peo–ppo–peo. Journal of Solid State Chemistry. 2009, 182:1700-170767. Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P. Biosynthesis of silver nanoparticles from tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids and Surfaces B: Biointerfaces. 2012, 96:69-7468. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A. Green synthesis of silver nanoparticles using seed extract of jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009, 348:212-21669. Hebeish A, El-Rafie M, Abdel-Mohdy F, Abdel-Halim E, Emam HE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers. 2010, 82:933-94170. Emam HE, Manian AP, Široká B, Duelli H, Redl B, Pipal A, Bechtold T. Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles–why “nano”-silver? Journal of Cleaner Production. 2013, 39:17-2371. Notriawan D, Angasa E, Suharto TE, Hendri J, Nishina Y. Green synthesis of silver nanoparticles using aqueous rinds extract of brucea javanica (l.) merr at ambient temperature. Materials Letters. 2013, 97:181-18372. Tang B, Wang J, Xu S, Afrin T, Xu W, Sun L, Wang X. Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. Journal of colloid and interface science. 2011, 356:513-51873. Deivaraj T, Lala NL, Lee JY. Solvent-induced shape evolution of pvp protected spherical silver nanoparticles into triangular nanoplates and nanorods. Journal of colloid and interface science. 2005, 289:402-40974. Si G, Shi W, Li K, Ma Z. Synthesis of pss-capped triangular silver nanoplates with tunable spr. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2011, 38075. Jia H, Zeng J, An J, Song W, Xu W, Zhao B. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate. Thin Solid Films. 2008, 516:5004-500976. Samanta S, Sarkar P, Pyne S, Sahoo GP, Misra A. Synthesis of silver nanodiscs and triangular nanoplates in pvp matrix: Photophysical study and simulation of uv–vis extinction spectra using dda method. Journal of Molecular Liquids. 2012, 165:21-2677. González A, Noguez C, Beránek J, Barnard A. Size, shape, stability, and color of plasmonic silver nanoparticles. The Journal of Physical Chemistry C. 2014, 118:9128-913678. Hebeish A, El-Naggar M, Fouda MM, Ramadan M, Al-Deyab SS, El-Rafie M. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers. 2011, 86:936-94079. Ki HY, Kim JH, Kwon SC, Jeong SH. A study on multifunctional wool textiles treated with nano-sized silver. Journal of Materials Science. 2007, 42:8020-802480. Mohammad F. High-energy radiation induced sustainable coloration and functional finishing of textile materials. Industrial Engineering Chemistry Research. 2015, 54:3727-374581. Samal SS, Jeyaraman P, Vishwakarma V. Sonochemical coating of ag-tio2 nanoparticles on textile fabrics for stain repellency and self-cleaning-the indian scenario: A review. Journal of Minerals and Materials Characterization and Engineering. 2010, 9:51982. Chattopadhyay D, Patel B. Improvement in physical and dyeing properties of natural fibres through pre-treatment with silver nanoparticles. Indian journal of fibre textile research. 2009, 34:36883. Tang B, Zhang M, Hou X, Li J, Sun L, Wang X. Coloration of cotton fibers with anisotropic silver nanoparticles. Industrial engineering chemistry research. 2012, 51:12807-1281384. Wu M, Ma B, Pan T, Chen S, Sun J. Silver‐nanoparticle‐colored cotton fabrics with tunable colors and durable antibacterial and self‐healing superhydrophobic properties. Advanced Functional Materials. 2016, 26:569-57685. Emam HE, Saleh N, Nagy KS, Zahran M. Instantly agnps deposition through facile solventless technique for poly-functional cotton fabrics. International journal of biological macromolecules. 2016, 84:308-31886. Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with ag nanoparticles. Carbohydrate Polymers. 2009, 78:564-56987. Thanh NVK, Phong NTP. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid. IOP Publishing; 2009, 187:01207288. Raza ZA, Rehman A, Mohsin M, Bajwa SZ, Anwar F, Naeem A, Ahmad N. Development of antibacterial cellulosic fabric via clean impregnation of silver nanoparticles. Journal of Cleaner Production. 2015, 101:377-38689. Sathishkumar M, Sneha K, Yun Y-S. Immobilization of silver nanoparticles synthesized using curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource technology. 2010, 101:7958-796590. Silva CJ, Prabaharan M, Gübitz G, Cavaco-Paulo A. Treatment of wool fibres with subtilisin and subtilisin-peg. Enzyme and Microbial Technology. 2005, 36:917-92291. Zhu P, Sun G. Antimicrobial finishing of wool fabrics using quaternary ammonium salts. Journal of Applied Polymer Science. 2004, 93:1037-104192. Montazer M, Pakdel E. Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011, 12:293-30393. Lü X, Cui S. Wool keratin-stabilized silver nanoparticles. Bioresource technology. 2010, 101:4703-470794. King DG, Pierlot AP. Absorption of nanoparticles by wool. Coloration Technology. 2009, 125:111-11695. Osório I, Igreja R, Franco R, Cortez J. Incorporation of silver nanoparticles on textile materials by an aqueous procedure. Materials Letters. 2012, 75:200-20396. Perumalraj R. Effect of sliver nanoparticles on wool fibre. ISRN Chemical Engineering. 2012, 201297. Raja A, Thilagavathi G, Kannaian T. Synthesis of spray dried polyvinyl pyrrolidone coated silver nanopowder and its application on wool and cotton for microbial resistance. Indian journal of fibre textile research. 2010, 35:5998. Hadad L, Perkas N, Gofer Y, Calderon‐Moreno J, Ghule A, Gedanken A. Sonochemical deposition of silver nanoparticles on wool fibers. Journal of applied polymer science. 2007, 104:1732-173799. Kelly FM, Johnston JH. Colored and functional silver nanoparticle− wool fiber composites. ACS applied materials interfaces. 2011, 3:1083-1092100. Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P. Clusters of poly (acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics. The Journal of Physical Chemistry C. 2008, 112:11758-11766101. Zhang Y-Q. Applications of natural silk protein sericin in biomaterials. Biotechnology advances. 2002, 20:91-100102. Gulrajani M, Gupta D, Periyasamy S, Muthu S. Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. Journal of applied polymer science. 2008, 108:614-623103. Vankar PS, Shukla D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Applied Nanoscience. 2012, 2:163-168104. Tang B, Li J, Hou X, Afrin T, Sun L, Wang X. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Industrial Engineering Chemistry Research. 2013, 52:4556-4563105. Zhang G, Liu Y, Gao X, Chen Y. Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles. Nanoscale research letters. 2014, 9:1-8106. Potiyaraj P, Kumlangdudsana P, Dubas ST. Synthesis of silver chloride nanocrystal on silk fibers. Materials Letters. 2007, 61:2464-2466107. Abbasi AR, Morsali A. Formation of silver iodide nanoparticles on silk fiber by means of ultrasonic irradiation. Ultrasonics sonochemistry. 2010, 17:704-710108. Abbasi AR, Morsali A. Synthesis and properties of silk yarn containing ag nanoparticles under ultrasound irradiation. Ultrasonics sonochemistry. 2011, 18:282-287109. Lu Z, Meng M, Jiang Y, Xie J. Uv-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014, 447:1-7110. Lu Z, Xiao J, Wang Y, Meng M. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. Journal of colloid and interface science. 2015, 452:8-14111. Wang X, Gao W, Xu S, Xu W. Luminescent fibers: In situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity. Chemical engineering journal. 2012, 210:585-589112. Zhang D, Toh GW, Lin H, Chen Y. In situ synthesis of silver nanoparticles on silk fabric with pnp for antibacterial finishing. Journal of Materials Science. 2012, 47:5721-5728113. Chang S, Kang B, Dai Y, Chen D. Synthesis of antimicrobial silver nanoparticles on silk fibers via γ‐radiation. Journal of applied polymer science. 2009, 112:2511-2515114. Široky J, Široka B, Bechtold T. Alkali treatments of woven lyocell fabrics. Woven Fabrics. InTech. p. 2012:179-204115. Cai J, Kimura S, Wada M, Kuga S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules. 2008, 10:87-94116. Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H. Synthesis of silver nanoparticles templated by tempo-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules. 2009, 10:2714-2717117. Kim JY. Method for preparing an antimicrobial cotton of cellulose matrix having chemically and/or physically bonded silver and antimicrobial cotton prepared therefrom. 2012118. Mahltig B, Haufe H, Böttcher H. Functionalisation of textiles by inorganic sol–gel coatings. Journal of Materials Chemistry. 2005, 15:4385-4398119. Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environmental Science Technology. 2009, 43:8113-8118120. Lorenz C, Windler L, Von Goetz N, Lehmann R, Schuppler M, Hungerbühler K, Heuberger M, Nowack B. Characterization of silver release from commercially available functional (nano) textiles. Chemosphere. 2012, 89:817-824121. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the total environment. 2008, 390

    Elektrohemijska sinteza i karakterizacija nanokompozita polivinil-alkohola I nanočestica srebra

    Get PDF
    In this doctoral dissertation, a composite hydrogel consisting of poly(vinyl alcohol), graphene and silver nanoparticles, (Ag/PVA/Gr), was prepared by the immobilization of silver nanoparticles (AgNPs) in poly(vinyl alcohol)/graphene (PVA/Gr) hydrogel matrix in two steps. The first step was cross linking of the PVA/Gr colloid solution by the freezing/thawing method, while in the second step, in situ electrochemical method was used to incorporate AgNPs inside the PVA/Gr hydrogel matrix. The main aim of this study was to produce the nanocomposite graphene-based biomaterial with incorporated silver nanoparticles using in situ electrochemical method, aimed for soft tissue implants, wound dressings and drug delivery. The electrochemical route of nanoparticles synthesis is especially attractive for biomedical applications due to high purity and precise size control of metal particles and the absence of chemical cross linking agents and undesired products. Repeated cyclic freezing/thawing method was used to prepare poly(vinyl alcohol) PVA and poly(vinyl alcohol)/graphene (PVA/Gr) hydrogel discs, followed by electrochemical reduction method of different concentrations of Ag+ ions (0.25, 0.5,1.0 and 3.9 mM AgNO3 swelling solution) inside the hydrogel polymer matrices at a constant voltage that enables the silver particle size control, in a specially designed electrochemical cell. Silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposites were characterized by UV–visible spectroscopy. The absorption spectra at about 405-420 nm proved existence of AgNPs in both Ag/PVA and Ag/PVA/Gr nanocomposites. Cyclic voltammetry revealed some oxidation and reduction peaks suggesting the presence of AgNPs between polymer chains. Raman spectroscopy analysis confirmed the graphene structure in its pure form, X-ray diffraction was used to reveal the additional interactions established between the PVA molecules and graphene sheets and the AgNPs situated between the polymer chains in viii the Ag/PVA/Gr nanocomposite. The calculated interspacing (d-spacing) value for (002) lattice plane of the PVA and Ag/PVA hydrogels was 0.457 nm, while the obtained value changed slightly with the introduction of graphene sheets (0.449 nm for Ag/PVA/Gr nanocomposite). Fourier transform infrared spectroscopy (FTIR) results for both Ag/PVA and Ag/PVA/Gr nanocomposites suggested the interaction between AgNPs and hydroxyl groups of the PVA molecules through decoupling between the corresponding vibrations. Thermogravimetric analysis and corresponding differential thermal analysis were done to investigate the role of graphene sheets in the thermal stability of thus prepared nanocomposite samples, and the results showed higher stability of Ag/PVA/Gr than Ag/PVA nanocomposites. Morphology of the prepared PVA, PVA/Gr, Ag/PVA and Ag/PVA/Gr samples were examined by field-emission scanning electron microscopy (FE-SEM) technique and the microphotographs showed sphere-shaped AgNPs at nanoscale levels which were around 36 nm in the Ag/PVA and around 17 nm in the Ag/PVA/Gr nanocomposites...Ova doktorska disertacija se bavi sintezom hidrogelova polivinil-alkohola, grafena i nanočestica srebra (Ag/PVA/Gr), imobilizacijom nanočestica srebra u matrici hidrogela polivinil-alkohol/grafen (PVA/Gr) u dva koraka. Prvi korak je umrežavanje koloidnog rastvora PVA/Gr metodom zamrzavanja i odmrzavanja, dok je u drugom koraku primenjena in situ elektrohemijska metoda za inkorporaciju nanočestica srebra u matrici PVA/Gr hidrogela. Glavni cilj ovog istraživanja je bila priprema nanokompozitnih biomaterijala na bazi grafena sa inkorporisanim nanočesticama srebra, sa mogućom primenom u vidu implantata mekog tkiva, obloga za rane i nosača za lekove. Elektrohemijski postupak sinteze nanočestica je posebno atraktivan za primene u biomedicini, zbog velike čistoće i mogućnosti precizne kontrole dobijenih nanočestica, kao i zbog odsustva hemijskih agenasa i neželjenih produkata. Metoda umrežavanja cikličnim zamrzavanjem i odmrzavanjem je korišćena u cilju dobijanja polivinil-alkohol (PVA) i polivinil-alkohol/grafen (PVA/Gr) hidrogelova u obliku diskova, a zatim je izvršena elektrohemijska redukcija Ag+ jona različitih koncentracija (0,25, 0,5,1,0 i 3,9 mM AgNO3 swelling solution) u polimernoj matrici hidrogela, na konstantnom naponu, što omogućava kontrolu dimenzija čestica srebra, u posebno dizajniranoj elektrohemijskoj ćeliji. Srebro/polivinil-alkohol (Ag/PVA) i srebro/polivinil-alkohol/grafen (Ag/PVA/Gr) nanokompoziti su karakterisani UV-vidljivom spektroskopijom. Apsorpcioni spektri sa maksimumom na oko 405-420 nm su dokazali prisustvo nanočestica srebra u Ag/PVA i Ag/PVA/Gr nanokompozitima. Cikličnom voltametrijom su pokazani pikovi oksidacije i redukcije koji ukazuju na prisustvo nanočestica srebra u polimernoj matrici. Ramanova spektroskopija je potvrdila čistu grafensku strukturu, dok je rendgenska difrakcija korišćena za ispitivanje interakcija između PVA molekula sa grafenom i nanočesticama srebra, smeštenim između polimernih lanaca Ag/PVA/Gr nanokompozita. Izračunato rastojanje između krisalnih xi ravni za (002) ravan u PVA i Ag/PVA hidrogelovima je iznosilo 0.457 nm, dok se ova vrednost promenila nakon inkorporacije grafena (0.449 nm za Ag/PVA/Gr nanokompozit). Rezultati analize infracrvenom spektroskopijom sa Furijeovom transformacijom (FTIR) za Ag/PVA i Ag/PVA/Gr nanokompozite su ukazali na interakcije između nanočestica srebra i hidroksilnih grupa na PVA molekulima, na osnovu razdvajanja odgovarajućih vibracionih traka. Termogravimetrijska analiza i diferencijalna termogravimetrijska analiza su korišćene radi ispitivanja termičke stabilnosti dobijenih uzoraka hidrogelova, a rezultati su pokazali povećanu stabilnost Ag/PVA/Gr u odnosu na Ag/PVA nanokompozite. Morfologija dobijenih uzoraka PVA, PVA/Gr, Ag/PVA i Ag/PVA/Gr je ispitana tehnikom skenirajuće elektronske mikroskopije (FE-SEM), a na mikrografijama su uočene čestice srebra sfernog oblika i nanometarskih dimenzija oko 36 nm u Ag/PVA i oko 17 nm u Ag/PVA/Gr nanokompozitu..

    Copper nanocrystals-based conductive inks for printed electronics

    Get PDF
    Copper (Cu) is an inexpensive and conductive metal that upon inclusion into liquid solvents, forms a conductive ink. However, metallic Cu and solvents do not mix at room temperature. To integrate both components, Cu must be in a state that enables dissolution or dispersion in the liquid media. Here, we achieve that by manufacturing Cu nanoparticles (~10-9 m) capped with organic molecules that are soluble in selected solvents. We developed a cost-effective method to produce these Cu nanoparticles of different sizes, studied the surrounding molecules and demonstrated that we could adapt solvent compatibility of the Cu particles by changing the nature of the surface ligands. By depositing these inks onto a substrate, conductive films with electrical functionalities could be obtained, paving the way for printable circuitry

    A class of multifunctional smart energy materials

    Get PDF
    Funding Information: S. Goswami would like to thank to Lisboa2020 Programme, Centro 2020 programme, Portugal 2020, European Union, through the European Social Fund who supported LISBOA-05-3559-FSE-000007 and CENTRO-04-3559-FSE-000094 operations as well as to Fundação para a Ciência e Tecnologia (FCT) and Agência Nacional de Inovação (ANI). Publisher Copyright: © 2022 The AuthorsPolymer material provides significant advantages over the conventional inorganic material-based electronics due to its attractive features including miniaturized dimension and feasible improvisations in physical properties through molecular design and chemical synthesis. In particular, conjugate polymers are of great interest because of their ability to control the energy gap and electronegativity through molecular design that has made possible the synthesis of conducting polymers with a range of ionization potentials and electron affinities. Polyaniline (PANI) is one of the most popular conjugated polymers that has been widely explored so far for its multifunctionality in diverse potential applications. This review is focusing on the recent advances of PANI for smart energy applications including supercapacitors, batteries, solar cells and nanogenerators and the development in its synthesis, design, and fabrication processes. A details investigation on the different types of chemical process has been discussed to fabricate PANI in nanostructures, film, and composites form. The paper includes several studies which are advantageous for understanding: the unique chemical and physical properties of this polymer; and the easily tunable electrical properties along with its redox behavior; and different processes to develop nanostructures, film, or bulk form of PANI that are useful to derive its applicability in smart objects or devices.publishersversionpublishe

    Nanocomposite systems based on metal nanoparticles and polysaccharides for biomedical applications

    Get PDF
    2008/2009Questo lavoro riguarda lo sviluppo di materiali nanocompositi per applicazioni biomediche e si configura all’ interno del progetto europeo “Newbone” (EU-FP6); in particolare, lo scopo principale della tesi era realizzare un rivestimento biocompatibile e dotato di proprietà antibatteriche per protesi ortopediche. Sono stati preparati sistemi nanocompositi basati su un polisaccaride derivato dal chitosano (Chitlac) che permette di ottenere soluzioni colloidali di nanoparticelle (argento e oro) con proprietà antibatteriche. Parallelamente, è stato studiato un particolare meccanismo chimico di riduzione degli ioni argento ad opera dei residui di lattitolo del Chitlac; le proprietà ottiche delle nanoparticelle ottenute attraverso questo meccanismo sono state valutate attraverso spettroscopia Raman, evidenziando la possibilità di avere un incremento del segnale grazie al verificarsi dell’ effetto SERS. Essendo state riscontrate migliori proprietà biologiche del sistema a base di argento (Chitlac-nAg) rispetto a quello a base di oro in termini di efficacia antimicrobica e biocompatibilità, Chitlac-nAg è stato scelto per i successivi studi di realizzazione del rivestimento per la protesi. Test sul meccanismo antimicrobico della soluzione ChitlacnAg hanno dimostrato l’interazione tra le nanoparticelle e la membrana batterica. Allo stesso tempo, poiché la mancanza di barriere fisiche può favorire la diffusione delle nanoparticelle all’ interno delle cellule eucariote con rischio di effetti citotossici causati dalla loro internalizzazione, si è voluto realizzare delle strutture tridimensionali a base di Chitlac in grado di intrappolare le nanoparticelle. A questo scopo, sono state sfruttate le proprietà di gelificazione del polisaccaride alginato in modo da ottenere un sistema semi-solido in miscela con Chitlac-nAg; il materiale ottenuto possiede marcate proprietà antibatteriche senza però risultare tossico per le cellule eucariote, come dimostrato da test in vitro e in vivo. Questo risultato è particolarmente importante in relazione allo stato dell’ arte sull’ argomento. Poiché la parte portante della protesi è costituita da un polimero metacrilico, al fine di rivestire questo materiale di substrato è stata messa a punto una tecnica basata sull’ attivazione della superficie e successiva deposizione del rivestimento a base di Chitlac. Questa tecnica permette di ottenere un rivestimento nanocomposito costituito da nanoparticelle di argento incorporate nella matrice di Chitlac. Grazie a questo strato bioattivo la superficie della protesi acquisisce un’ efficace attività antibatterica che si manifesta quando i batteri entrano in diretto contatto con il materiale. Inoltre, test in vitro hanno dimostrato che le cellule eucariote aderiscono e proliferano sul rivestimento nanocomposito, suggerendo quindi una buona integrazione del materiale nei tessuti attorno all’ impianto. La combinazione di tali proprietà ha determinato la scelta di questo rivestimento per il test in vivo su “minipig” a conclusione del progetto europeo: questo test è al momento in via di svolgimento e da esso ci si può attendere una conferma degli incoraggianti risultati ottenuti dagli studi in vitro.The present work is focused on the development of nanocomposite systems for biomedical applications and has been carried out in the framework of the European Project called “Newbone” (EU-FP6); in particular, the main goal of the thesis was to realize biocompatible coatings for orthopedic prosthesis endowed with antimicrobial properties. Nanocomposite systems based on a chitosan-derived polysaccharide (Chitlac) that stabilizes metal nanoparticles (silver and gold) have been prepared in colloidal solutions which possess broad spectrum antibacterial properties. As a complementary work, it was studied and defined a particular chemical mechanism of silver ions reduction carried out by the lactose moieties of Chitlac; the optical properties of the metallic nanoparticles obtained through this mechanism were tested by means of Raman spectroscopy, thus detecting considerable enhancements of the signal due to the SERS effect (Surface Enhanced Raman Scattering). Given the better biological properties of silver-based systems (Chitlac-nAg) with respect to gold in terms of antimicrobial efficacy and biocompatibility, only the former metal was chosen in the following steps towards the preparation of the nanocomposite coating for the prosthesis. Studies on the biocidal mechanism of the Chitlac-nAg solution ascribed the activity to the interaction metal-bacteria membrane. On the other hand, since the lack of physical barriers to nanoparticle diffusion into eukaryotic cells determines the risk of a massive uptake with cytotoxic outcomes, we focused our attention toward the preparation of Chitlac-based threedimensional structures entrapping silver nanoparticles. To this end, the gel forming properties of the polysaccharide alginate were exploited allowing the production of a semi-solid system in a mixture with Chitlac-nAg: this material displays potent antibacterial properties without showing cytotoxic effects towards eukaryotic cells, as verified by in vitro and in vivo tests. Such result was particularly important in relation to the state of the art in this research field. Since the core material of the prosthesis is made of methacrylic thermosets, in order to coat this substrate material we have devised a technique based on surface activation followed by deposition of the Chitlac-based layer. Such technique allows obtaining a nanocomposite coating where silver nanoparticles are entrapped within the Chitlac matrix. This bioactive layer endows the thermoset surface with considerable antimicrobial properties, as bacteria are rapidly killed upon direct contact with the material. At the same time, in vitro tests proved that eukaryotic cells adhere and proliferate on the nanocomposite coating, which indicates the possibility to have good integration of the material in the tissues surrounding the implant. The combination of these properties determined the choice of our coating for the final in vivo test in a minipig model as a conclusion of the European project; this test is in progress at the moment and it will hopefully confirm the encouraging studies in vitro.XXII Ciclo198

    Wet chemical synthesis of nano and submicron Al particles for the preparation of Ni and Ru aluminides

    Get PDF
    Aufgrund ihrer großen Oberfläche besitzen Nanopartikel eine im Vergleich zu Mikropartikeln stark erhöhte Reaktivität. Während diese beispielsweise bei Thermiten in Form von Nanothermiten bereits ausgenutzt wird, ist ihre Verwendung zur Herstellung von Aluminiden unüblich. Zur Herstellung von Nanopartikeln haben sich unter anderem nasschemische Methoden etabliert. Diese Arbeit soll daher die Eignung nasschemisch hergestellter Nanopartikel zur Synthese von binären Ni and Ru Aluminiden untersuchen. Dazu wurde zunächst die nasschemische Synthese von Al Partikeln untersucht. Es wurde eine Methode zur Synthese von Al-Partikeln mit Größen von 100 – 150 nm mittels thermischer Zersetzung von Triisobutylaluminium entwickelt. Bei der Synthese mittels katalytischer Zersetzung von Alanen wurde der Einfluss der Reaktionsparameter auf die die Größe und Morphologie der Partikel systematisch untersucht. Um eine gute Durchmischung und einen guten Partikelkontakt zu erreichen wurde zur Synthese von binären Aluminiden eine Eintopfsynthese entwickelt. Dabei erfolgte zunächst die Synthese von Al Partikeln mittels Zersetzung von Triisobutylaluminium, bevor das zweite Metall durch Zersetzung einer geeigneten Vorstufe, wie Bis(cycloocta-1,5-dien)nickel(0) oder Ru3(CO)12, eingebracht wurde. Verglichen mit Systemen aus getrennt hergestellten Partikeln konnten diese Gemische durch thermische Behandlung mit höheren Umsätzen und niedrigeren Onsettemperaturen zu den jeweiligen Aluminiden umgesetzt werden.Due to their large surface, nanoparticles are exhibiting a highly increased reactivity compared to microparticles. While this is for example already exploited in the field of thermites in the form of nanothermites, their application for the preparation of aluminides is uncommon. Amongst others, wet chemical methods have been established for the preparation of nanoparticles. Thus, this work studies the suitability of wet chemically prepared nanoparticles for the preparation of binary Ni and Ru aluminides. The wet chemical synthesis of Al particles was studied. A method for the preparation of Al particles with sizes of 100 – 150 nm via a thermal decomposition of triisobutylaluminum was developed. Within the catalytic decomposition approach, the influence of the reaction parameters on the size and morphology of the resulting particles was systematically studied. To ensure a good intermixing and a good particle contact, a one-pot synthesis protocol was developed for the preparation of binary aluminides. Within this protocol, Al particles were prepared via a decomposition of triisobutylaluminum followed by the decomposition of a suitable precursor of the additional metal, such as bis(cycloocta-1,5-diene)nickel(0) or Ru3(CO)12. Compared to samples prepared from separately synthesized particles, these mixtures were reacted with increased yields as well as lower onset temperatures to the respective aluminides by a thermal treatment

    Toward Greener Nanosynthesis

    Full text link
    corecore