157 research outputs found

    Classification of time series patterns from complex dynamic systems

    Full text link

    Proceedings of the Third Symposium on Programming Languages and Software Tools : Kääriku, Estonia, August 23-24 1993

    Get PDF
    http://www.ester.ee/record=b1064507*es

    The current approaches in pattern recognition

    Get PDF

    Medición de intervalos temporales en la señal ecg utilizando transformada wavelet

    Get PDF
    Este documento presenta la metodología para la medición de intervalos temporales de interés en la señal electrocardiográfica, partiendo de los datos recolectados mediante un dispositivo móvil de adquisición y almacenamiento tipo Holter

    Bottom-up design of artificial neural network for single-lead electrocardiogram beat and rhythm classification

    Get PDF
    Performance improvement in computerized Electrocardiogram (ECG) classification is vital to improve reliability in this life-saving technology. The non-linearly overlapping nature of the ECG classification task prevents the statistical and the syntactic procedures from reaching the maximum performance. A new approach, a neural network-based classification scheme, has been implemented in clinical ECG problems with much success. The focus, however, has been on narrow clinical problem domains and the implementations lacked engineering precision. An optimal utilization of frequency information was missing. This dissertation attempts to improve the accuracy of neural network-based single-lead (lead-II) ECG beat and rhythm classification. A bottom-up approach defined in terms of perfecting individual sub-systems to improve the over all system performance is used. Sub-systems include pre-processing, QRS detection and fiducial point estimations, feature calculations, and pattern classification. Inaccuracies in time-domain fiducial point estimations are overcome with the derivation of features in the frequency domain. Feature extraction in frequency domain is based on a spectral estimation technique (combination of simulation and subtraction of a normal beat). Auto-regressive spectral estimation methods yield a highly sensitive spectrum, providing several local features with information on beat classes like flutter, fibrillation, and noise. A total of 27 features, including 16 in time domain and 11 in frequency domain are calculated. The entire data and problem are divided into four major groups, each group with inter-related beat classes. Classification of each group into related sub-classes is performed using smaller feed-forward neural networks. Input feature sub-set and the structure of each network are optimized using an iterative process. Optimal implementations of feed-forward neural networks provide high accuracy in beat classification. Associated neural networks are used for the more deterministic rhythm-classification task. An accuracy of more than 85% is achieved for all 13 classes included in this study. The system shows a graceful degradation in performance with increasing noise, as a result of the noise consideration in the design of every sub-system. Results indicate a neural network-based bottom-up design of single-lead ECG classification is able to provide very high accuracy, even in the presence of noise, flutter, and fibrillation

    Intelligent Pattern Analysis of the Foetal Electrocardiogram

    Get PDF
    The aim of the project on which this thesis is based is to develop reliable techniques for foetal electrocardiogram (ECG) based monitoring, to reduce incidents of unnecessary medical intervention and foetal injury during labour. World-wide electronic foetal monitoring is based almost entirely on the cardiotocogram (CTG), which is a continuous display of the foetal heart rate (FHR) pattern together with the contraction of the womb. Despite the widespread use of the CTG, there is no significant improvement in foetal outcome. In the UK alone it is estimated that birth related negligence claims cost the health authorities over £400M per-annum. An expert system, known as INFANT, has recently been developed to assist CTG interpretation. However, the CTG alone does not always provide all the information required to improve the outcome of labour. The widespread use of ECG analysis has been hindered by the difficulties with poor signal quality and the difficulties in applying the specialised knowledge required for interpreting ECG patterns, in association with other events in labour, in an objective way. A fundamental investigation and development of optimal signal enhancement techniques that maximise the available information in the ECG signal, along with different techniques for detecting individual waveforms from poor quality signals, has been carried out. To automate the visual interpretation of the ECG waveform, novel techniques have been developed that allow reliable extraction of key features and hence allow a detailed ECG waveform analysis. Fuzzy logic is used to automatically classify the ECG waveform shape using these features by using knowledge that was elicited from expert sources and derived from example data. This allows the subtle changes in the ECG waveform to be automatically detected in relation to other events in labour, and thus improve the clinicians position for making an accurate diagnosis. To ensure the interpretation is based on reliable information and takes place in the proper context, a new and sensitive index for assessing the quality of the ECG has been developed. New techniques to capture, for the first time in machine form, the clinical expertise / guidelines for electronic foetal monitoring have been developed based on fuzzy logic and finite state machines, The software model provides a flexible framework to further develop and optimise rules for ECG pattern analysis. The signal enhancement, QRS detection and pattern recognition of important ECG waveform shapes have had extensive testing and results are presented. Results show that no significant loss of information is incurred as a result of the signal enhancement and feature extraction techniques
    corecore