703 research outputs found

    On the Invariance of G\"odel's Second Theorem with regard to Numberings

    Get PDF
    The prevalent interpretation of G\"odel's Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem's dependency regarding G\"odel numberings. I introduce deviant numberings, yielding provability predicates satisfying L\"ob's conditions, which result in provable consistency sentences. According to the main result of this paper however, these "counterexamples" do not refute the theorem's prevalent interpretation, since once a natural class of admissible numberings is singled out, invariance is maintained.Comment: Forthcoming in The Review of Symbolic Logi

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Inheritance as Implicit Coercion

    Get PDF
    We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in the target of the translation. Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic lambda calculus, thus providing many models for the original language. This technique makes it possible to model a rich type discipline which includes parametric polymorphism and recursive types as well as inheritance. A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the sense discussed in this paper arises from the fact that programs can type-check in more than one way. Since interpretations follow the type-checking derivations, coherence theorems are required: that is, one must prove that the meaning of a program does not depend on the way it was type-checked. The proof of such theorems for our proposed interpretation are the basic technical results of this paper. Interestingly, proving coherence in the presence of recursive types, variants, and abstract types forced us to reexamine fundamental equational properties that arise in proof theory (in the form of commutative reductions) and domain theory (in the form of strict vs. non-strict functions)

    Implicit complexity for coinductive data: a characterization of corecurrence

    Full text link
    We propose a framework for reasoning about programs that manipulate coinductive data as well as inductive data. Our approach is based on using equational programs, which support a seamless combination of computation and reasoning, and using productivity (fairness) as the fundamental assertion, rather than bi-simulation. The latter is expressible in terms of the former. As an application to this framework, we give an implicit characterization of corecurrence: a function is definable using corecurrence iff its productivity is provable using coinduction for formulas in which data-predicates do not occur negatively. This is an analog, albeit in weaker form, of a characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034

    Implicit Commitment in a General Setting

    Full text link
    G\"odel's Incompleteness Theorems suggest that no single formal system can capture the entirety of one's mathematical beliefs, while pointing at a hierarchy of systems of increasing logical strength that make progressively more explicit those \emph{implicit} assumptions. This notion of \emph{implicit commitment} motivates directly or indirectly several research programmes in logic and the foundations of mathematics; yet there hasn't been a direct logical analysis of the notion of implicit commitment itself. In a recent paper, \L elyk and Nicolai carried out an initial assessment of this project by studying necessary conditions for implicit commitments; from seemingly weak assumptions on implicit commitments of an arithmetical system SS, it can be derived that a uniform reflection principle for SS -- stating that all numerical instances of theorems of SS are true -- must be contained in SS's implicit commitments. This study gave rise to unexplored research avenues and open questions. This paper addresses the main ones. We generalize this basic framework for implicit commitments along two dimensions: in terms of iterations of the basic implicit commitment operator, and via a study of implicit commitments of theories in arbitrary first-order languages, not only couched in an arithmetical language
    corecore