2,062 research outputs found

    Brain regions that process case: Evidence from basque

    Get PDF
    The aim of this event-related fMRI study was to investigate the cortical networks involved in case processing, an operation that is crucial to language comprehension yet whose neural underpinnings are not well-understood. What is the relationship of these networks to those that serve other aspects of syntactic and semantic processing? Participants read Basque sentences that contained case violations, number agreement violations or semantic anomalies, or that were both syntactically and semantically correct. Case violations elicited activity increases, compared to correct control sentences, in a set of parietal regions including the posterior cingulate, the precuneus, and the left and right inferior parietal lobules. Number agreement violations also elicited activity increases in left and right inferior parietal regions, and additional activations in the left and right middle frontal gyrus. Regions-of-interest analyses showed that almost all of the clusters that were responsive to case or number agreement violations did not differentiate between these two. In contrast, the left and right anterior inferior frontal gyrus and the dorsomedial prefrontal cortex were only sensitive to semantic violations. Our results suggest that whereas syntactic and semantic anomalies clearly recruit distinct neural circuits, case, and number violations recruit largely overlapping neural circuits and that the distinction between the two rests on the relative contributions of parietal and prefrontal regions, respectively. Furthermore, our results are consistent with recently reported contributions of bilateral parietal and dorsolateral brain regions to syntactic processing, pointing towards potential extensions of current neurocognitive theories of language. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc

    Connectionist natural language parsing

    Get PDF
    The key developments of two decades of connectionist parsing are reviewed. Connectionist parsers are assessed according to their ability to learn to represent syntactic structures from examples automatically, without being presented with symbolic grammar rules. This review also considers the extent to which connectionist parsers offer computational models of human sentence processing and provide plausible accounts of psycholinguistic data. In considering these issues, special attention is paid to the level of realism, the nature of the modularity, and the type of processing that is to be found in a wide range of parsers

    The neurocognition of syntactic processing

    Get PDF

    The relationship between phonological and morphological deficits in Broca's aphasia: further evidence from errors in verb inflection

    Get PDF
    A previous study of 10 patients with Broca’s aphasia demonstrated that the advantage for producing the past tense of irregular over regular verbs exhibited by these patients was eliminated when the two sets of past-tense forms were matched for phonological complexity (Bird, Lambon Ralph, Seidenberg, McClelland, & Patterson, 2003). The interpretation given was that a generalised phonological impairment was central to the patients’ language deficits, including their poor performance on regular past tense verbs. The current paper provides further evidence in favour of this hypothesis, on the basis of a detailed analysis of the errors produced by these same 10 patients in reading, repetition, and sentence completion for a large number of regular, irregular, and nonce verbs. The patients’ predominant error types in all tasks and for all verb types were close and distant phonologically related responses. The balance between close and distant errors varied along three continua: the severity of the patient (more distant errors produced by the more severely impaired patients); the difficulty of the task (more distant errors in sentence completion > reading > repetition); the difficulty of the item (more distant errors for novel word forms than real verbs). A position analysis for these phonologically related errors revealed that vowels were most likely to be preserved and that consonant onsets and offsets were equally likely to be incorrect. Critically, the patients’ errors exhibited a strong tendency to simplify the phonological form of the target. These results are consistent with the notion that the patients’ relatively greater difficulty with regular past tenses reflects a phonological impairment that is sensitive to the complexity of spoken forms

    Neuronal bases of structural coherence in contemporary dance observation

    Get PDF
    The neuronal processes underlying dance observation have been the focus of an increasing number of brain imaging studies over the past decade. However, the existing literature mainly dealt with effects of motor and visual expertise, whereas the neural and cognitive mechanisms that underlie the interpretation of dance choreographies remained unexplored. Hence, much attention has been given to the Action Observation Network (AON) whereas the role of other potentially relevant neuro-cognitive mechanisms such as mentalizing (theory of mind) or language (narrative comprehension) in dance understanding is yet to be elucidated. We report the results of an fMRI study where the structural coherence of short contemporary dance choreographies was manipulated parametrically using the same taped movement material. Our participants were all trained dancers. The whole-brain analysis argues that the interpretation of structurally coherent dance phrases involves a subpart (Superior Parietal) of the AON as well as mentalizing regions in the dorsomedial Prefrontal Cortex. An ROI analysis based on a similar study using linguistic materials (Pallier et al. 2011) suggests that structural processing in language and dance might share certain neural mechanisms

    The Effects of Neurocognitive Aging on Sentence Processing

    Get PDF
    Across the lifespan, successful language comprehension is crucial for continued participation in everyday life. The success of language comprehension relies on the intact functioning of both language-specific processes as well as domain-general cognitive processes that support language comprehension in general. This two-sided nature of successful language comprehension may contribute to the two diverging observations in healthy aging: the preservation and the decline of language comprehension on both the cognitive and the neural level. To date, our understanding of these two competing facets is incomplete and unclear. While greater language experience comes with increasing age, most domain-general cognitive functions, like verbal working memory, decline in healthy aging. The here presented thesis shows that when the electrophysiological network relevant for verbal working memory is already compromised at rest, language comprehension declines in older adults. Moreover, it could be shown that, as verbal working memory capacity declines with age, resources may be- come insufficient to successfully encode language-specific information into memory, yielding language comprehension difficulties in old age. Age differences in the electrophysiological dynamics underlying sentence encoding indicate that the encoding of detailed information may increasingly be inhibited throughout the lifespan, possibly to avoid overloading the verbal working memory. However, limitations in verbal working memory could be attenuated by the use of language-specific constraints. That is, semantic and syntactic constraints can be used to establish relations between words which reduces the memory load from individual word information to information about word group. Here, it was found that older adults do not benefit from the use of syntactic constraints as much as younger adults while the benefit of using semantic constraints was comparable across age. Overall, the here presented thesis suggests that previous findings on language comprehension in healthy aging are not contradictory but rather converge on a simultaneous combination of selective preservation and decline of various language-specific processes, burdened by domain-general neurocognitive aging

    Towards a neural basis of auditory sentence processing

    Get PDF
    AbstractFunctional dissociations within the neural basis of auditory sentence processing are difficult to specify because phonological, syntactic and semantic information are all involved when sentences are perceived. In this review I argue that sentence processing is supported by a temporo–frontal network. Within this network, temporal regions subserve aspects of identification and frontal regions the building of syntactic and semantic relations. Temporal analyses of brain activation within this network support syntax-first models because they reveal that building of syntactic structure precedes semantic processes and that these interact only during a later stage

    Lesions impairing regular versus irregular past tense production

    Get PDF
    We investigated selective impairments in the production of regular and irregular past tense by examining language performance and lesion sites in a sample of twelve stroke patients. A disadvantage in regular past tense production was observed in six patients when phonological complexity was greater for regular than irregular verbs, and in three patients when phonological complexity was closely matched across regularity. These deficits were not consistently related to grammatical difficulties or phonological errors but were consistently related to lesion site. All six patients with a regular past tense disadvantage had damage to the left ventral pars opercularis (in the inferior frontal cortex), an area associated with articulatory sequencing in prior functional imaging studies. In addition, those that maintained a disadvantage for regular verbs when phonological complexity was controlled had damage to the left ventral supramarginal gyrus (in the inferior parietal lobe), an area associated with phonological short-term memory. When these frontal and parietal regions were spared in patients who had damage to subcortical (n = 2) or posterior temporo-parietal regions (n = 3), past tense production was relatively unimpaired for both regular and irregular forms. The remaining (12th) patient was impaired in producing regular past tense but was significantly less accurate when producing irregular past tense. This patient had frontal, parietal, subcortical and posterior temporo-parietal damage, but was distinguished from the other patients by damage to the left anterior temporal cortex, an area associated with semantic processing. We consider how our lesion site and behavioural observations have implications for theoretical accounts of past tense production
    corecore