356 research outputs found

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine

    Get PDF
    Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computa-tional as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles

    Nonlinear and factorization methods for the non-invasive investigation of the central nervous system

    Get PDF
    This thesis focuses on the functional study of the Central Nervous System (CNS) with non-invasive techniques. Two different aspects are investigated: nonlinear aspects of the cerebrovascular system, and the muscle synergies model for motor control strategies. The main objective is to propose novel protocols, post-processing procedures or indices to enhance the analysis of cerebrovascular system and human motion analysis with noninvasive devices or wearable sensors in clinics and rehabilitation. We investigated cerebrovascular system with Near-infrared Spectroscopy (NIRS), a technique measuring blood oxygenation at the level of microcirculation, whose modification reflects cerebrovascular response to neuronal activation. NIRS signal was analyzed with nonlinear methods, because some physiological systems, such as neurovascular coupling, are characterized by nonlinearity. We adopted Empirical Mode Decomposition (EMD) to decompose signal into a finite number of simple functions, called Intrinsic Mode Functions (IMF). For each IMF, we computed entropy-based features to characterize signal complexity and variability. Nonlinear features of the cerebrovascular response were employed to characterize two treatments. Firstly, we administered a psychotherapy called eye movement desensitization and reprocessing (EMDR) to two groups of patients. The first group performed therapy with eye movements, the second without. NIRS analysis with EMD and entropy-based features revealed a different cerebrovascular pattern between the two groups, that may indicate the efficacy of the psychotherapy when administered with eye movements. Secondly, we administered ozone autohemotherapy to two groups of subjects: a control group of healthy subjects and a group of patients suffering by multiple sclerosis (MS). We monitored the microcirculation with NIRS from oxygen-ozone injection up 1.5 hours after therapy, and 24 hours after therapy. We observed that, after 1.5 hours after the ozonetherapy, oxygenation levels improved in both groups, that may indicate that ozonetherapy reduced oxidative stress level in MS patients. Furthermore, we observed that, after ozonetherapy, autoregulation improved in both groups, and that the beneficial effects of ozonetherapy persisted up to 24 hours after the treatment in MS patients. Due to the complexity of musculoskeletal system, CNS adopts strategies to efficiently control the execution of motor tasks. A model of motor control are muscle synergies, defined as functional groups of muscles recruited by a unique central command. Human locomotion was the object of investigation, due to its importance for daily life and the cyclicity of the movement. Firstly, by exploiting features provided from statistical gait analysis, we investigated consistency of muscle synergies. We demonstrated that synergies are highly repeatable within-subjects, reinforcing the hypothesis of modular control in motor performance. Secondly, in locomotion, we distinguish principal from secondary activations of electromyography. Principal activations are necessary for the generation of the movement. Secondary activations generate supplement movements, for instance slight balance correction. We investigated the difference in the motor control strategies underlying muscle synergies of principal (PS) and secondary (SS) activations. We found that PS are constituted by a few modules with many muscles each, whereas SS are described by more modules than PS with one or two muscles each. Furthermore, amplitude of activation signals of PS is higher than SS. Finally, muscle synergies were adopted to investigate the efficacy of rehabilitation of stiffed-leg walking in lower back pain (LBP). We recruited a group of patients suffering from non-specific LBP stiffening the leg at initial contact. Muscle synergies during gait were extracted before and after rehabilitation. Our results showed that muscles recruitment and consistency of synergies improved after the treatment, showing that the rehabilitation may affect motor control strategies

    ć…ç–«ć­Šçš„ăŠă‚ˆăłé€ČćŒ–çš„ă‚ąăƒ«ă‚ŽăƒȘă‚șムにćŸșă„ăæ”čè‰Żă•ă‚ŒăŸçŸ€çŸ„èƒœæœ€é©ćŒ–ă«é–ąă™ă‚‹ç ”ç©¶

    Get PDF
    ćŻŒć±±ć€§ć­Šăƒ»ćŻŒç†ć·„ćšç”Č珏175ć·ăƒ»æ„ŠçŽ‰ăƒ»2020/3/24ćŻŒć±±ć€§ć­Š202

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Data Mining Framework for Monitoring Attacks In Power Systems

    Get PDF
    Vast deployment of Wide Area Measurement Systems (WAMS) has facilitated in increased understanding and intelligent management of the current complex power systems. Phasor Measurement Units (PMU\u27s), being the integral part of WAMS transmit high quality system information to the control centers every second. With the North American Synchro Phasor Initiative (NAPSI), the number of PMUs deployed across the system has been growing rapidly. With this increase in the number of PMU units, the amount of data accumulated is also growing in a tremendous manner. This increase in the data necessitates the use of sophisticated data processing, data reduction, data analysis and data mining techniques. WAMS is also closely associated with the information and communication technologies that are capable of implementing intelligent protection and control actions in order to improve the reliability and efficiency of the existing power systems. Along with the myriad of advantages that these measurements systems, informational and communication technologies bring, they also lead to a close synergy between heterogeneous physical and cyber components which unlocked access points for easy cyber intrusions. This easy access has resulted in various cyber attacks on control equipment consequently increasing the vulnerability of the power systems.;This research proposes a data mining based methodology that is capable of identifying attacks in the system using the real time data. The proposed methodology employs an online clustering technique to monitor only limited number of measuring units (PMU\u27s) deployed across the system. Two different classification algorithms are implemented to detect the occurrence of attacks along with its location. This research also proposes a methodology to differentiate physical attacks with malicious data attacks and declare attack severity and criticality. The proposed methodology is implemented on IEEE 24 Bus reliability Test System using data generated for attacks at different locations, under different system topologies and operating conditions. Different cross validation studies are performed to determine all the user defined variables involved in data mining studies. The performance of the proposed methodology is completely analyzed and results are demonstrated. Finally the strengths and limitations of the proposed approach are discussed

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome

    Semantic systems biology of prokaryotes : heterogeneous data integration to understand bacterial metabolism

    Get PDF
    The goal of this thesis is to improve the prediction of genotype to phenotypeassociations with a focus on metabolic phenotypes of prokaryotes. This goal isachieved through data integration, which in turn required the development ofsupporting solutions based on semantic web technologies. Chapter 1 providesan introduction to the challenges associated to data integration. Semantic webtechnologies provide solutions to some of these challenges and the basics ofthese technologies are explained in the Introduction. Furthermore, the ba-sics of constraint based metabolic modeling and construction of genome scalemodels (GEM) are also provided. The chapters in the thesis are separated inthree related topics: chapters 2, 3 and 4 focus on data integration based onheterogeneous networks and their application to the human pathogen M. tu-berculosis; chapters 5, 6, 7, 8 and 9 focus on the semantic web based solutionsto genome annotation and applications thereof; and chapter 10 focus on thefinal goal to associate genotypes to phenotypes using GEMs. Chapter 2 provides the prototype of a workflow to efficiently analyze in-formation generated by different inference and prediction methods. This me-thod relies on providing the user the means to simultaneously visualize andanalyze the coexisting networks generated by different algorithms, heteroge-neous data sets, and a suite of analysis tools. As a show case, we have ana-lyzed the gene co-expression networks of M. tuberculosis generated using over600 expression experiments. Hereby we gained new knowledge about theregulation of the DNA repair, dormancy, iron uptake and zinc uptake sys-tems. Furthermore, it enabled us to develop a pipeline to integrate ChIP-seqdat and a tool to uncover multiple regulatory layers. In chapter 3 the prototype presented in chapter 2 is further developedinto the Synchronous Network Data Integration (SyNDI) framework, whichis based on Cytoscape and Galaxy. The functionality and usability of theframework is highlighted with three biological examples. We analyzed thedistinct connectivity of plasma metabolites in networks associated with highor low latent cardiovascular disease risk. We obtained deeper insights froma few similar inflammatory response pathways in Staphylococcus aureus infec-tion common to human and mouse. We identified not yet reported regulatorymotifs associated with transcriptional adaptations of M. tuberculosis.In chapter 4 we present a review providing a systems level overview ofthe molecular and cellular components involved in divalent metal homeosta-sis and their role in regulating the three main virulence strategies of M. tu-berculosis: immune modulation, dormancy and phagosome escape. With theuse of the tools presented in chapter 2 and 3 we identified a single regulatorycascade for these three virulence strategies that respond to limited availabilityof divalent metals in the phagosome. The tools presented in chapter 2 and 3 achieve data integration throughthe use of multiple similarity, coexistence, coexpression and interaction geneand protein networks. However, the presented tools cannot store additional(genome) annotations. Therefore, we applied semantic web technologies tostore and integrate heterogeneous annotation data sets. An increasing num-ber of widely used biological resources are already available in the RDF datamodel. There are however, no tools available that provide structural overviewsof these resources. Such structural overviews are essential to efficiently querythese resources and to assess their structural integrity and design. There-fore, in chapter 5, I present RDF2Graph, a tool that automatically recoversthe structure of an RDF resource. The generated overview enables users tocreate complex queries on these resources and to structurally validate newlycreated resources. Direct functional comparison support genotype to phenotype predictions.A prerequisite for a direct functional comparison is consistent annotation ofthe genetic elements with evidence statements. However, the standard struc-tured formats used by the public sequence databases to present genome an-notations provide limited support for data mining, hampering comparativeanalyses at large scale. To enable interoperability of genome annotations fordata mining application, we have developed the Genome Biology OntologyLanguage (GBOL) and associated infrastructure (GBOL stack), which is pre-sented in chapter 6. GBOL is provenance aware and thus provides a consistentrepresentation of functional genome annotations linked to the provenance.The provenance of a genome annotation describes the contextual details andderivation history of the process that resulted in the annotation. GBOL is mod-ular in design, extensible and linked to existing ontologies. The GBOL stackof supporting tools enforces consistency within and between the GBOL defi-nitions in the ontology. Based on GBOL, we developed the genome annotation pipeline SAPP (Se-mantic Annotation Platform with Provenance) presented in chapter 7. SAPPautomatically predicts, tracks and stores structural and functional annotationsand associated dataset- and element-wise provenance in a Linked Data for-mat, thereby enabling information mining and retrieval with Semantic Webtechnologies. This greatly reduces the administrative burden of handling mul-tiple analysis tools and versions thereof and facilitates multi-level large scalecomparative analysis. In turn this can be used to make genotype to phenotypepredictions. The development of GBOL and SAPP was done simultaneously. Duringthe development we realized that we had to constantly validated the data ex-ported to RDF to ensure coherence with the ontology. This was an extremelytime consuming process and prone to error, therefore we developed the Em-pusa code generator. Empusa is presented in chapter 8. SAPP has been successfully used to annotate 432 sequenced Pseudomonas strains and integrate the resulting annotation in a large scale functional com-parison using protein domains. This comparison is presented in chapter 9.Additionally, data from six metabolic models, nearly a thousand transcrip-tome measurements and four large scale transposon mutagenesis experimentswere integrated with the genome annotations. In this way, we linked gene es-sentiality, persistence and expression variability. This gave us insight into thediversity, versatility and evolutionary history of the Pseudomonas genus, whichcontains some important pathogens as well some useful species for bioengi-neering and bioremediation purposes. Genome annotation can be used to create GEM, which can be used to betterlink genotypes to phenotypes. Bio-Growmatch, presented in chapter 10, istool that can automatically suggest modification to improve a GEM based onphenotype data. Thereby integrating growth data into the complete processof modelling the metabolism of an organism. Chapter 11 presents a general discussion on how the chapters contributedthe central goal. After which I discuss provenance requirements for data reuseand integration. I further discuss how this can be used to further improveknowledge generation. The acquired knowledge could, in turn, be used to de-sign new experiments. The principles of the dry-lab cycle and how semantictechnologies can contribute to establish these cycles are discussed in chapter11. Finally a discussion is presented on how to apply these principles to im-prove the creation and usability of GEM’s.</p
    • 

    corecore