21,299 research outputs found

    The information transmitted by spike patterns in single neurons

    Full text link
    Spike patterns have been reported to encode sensory information in several brain areas. Here we assess the role of specific patterns in the neural code, by comparing the amount of information transmitted with different choices of the readout neural alphabet. This allows us to rank several alternative alphabets depending on the amount of information that can be extracted from them. One can thereby identify the specific patterns that constitute the most prominent ingredients of the code. We finally discuss the interplay of categorical and temporal information in the amount of synergy or redundancy in the neural code.Comment: To be published in Journal of Physiology Paris 200

    Anticancer drug synergy prediction in understudied tissues using transfer learning

    Get PDF
    ocaa212Objective: Drug combination screening has advantages in identifying cancer treatment options with higher efficacy without degradation in terms of safety. A key challenge is that the accumulated number of observations in in-vitro drug responses varies greatly among different cancer types, where some tissues are more understudied than the others. Thus, we aim to develop a drug synergy prediction model for understudied tissues as a way of overcoming data scarcity problems. Materials and Methods: We collected a comprehensive set of genetic, molecular, phenotypic features for cancer cell lines. We developed a drug synergy prediction model based on multitask deep neural networks to integrate multimodal input and multiple output. We also utilized transfer learning from data-rich tissues to data-poor tissues. Results: We showed improved accuracy in predicting synergy in both data-rich tissues and understudied tissues. In data-rich tissue, the prediction model accuracy was 0.9577 AUROC for binarized classification task and 174.3 mean squared error for regression task. We observed that an adequate transfer learning strategy significantly increases accuracy in the understudied tissues. Conclusions: Our synergy prediction model can be used to rank synergistic drug combinations in understudied tissues and thus help to prioritize future in-vitro experiments. Code is available at https://github.com/yejinjkim/synergy-transfer.Peer reviewe
    • …
    corecore