83 research outputs found

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Architectural explorations for streaming accelerators with customized memory layouts

    Get PDF
    El concepto básico de la arquitectura mono-nucleo en los procesadores de propósito general se ajusta bien a un modelo de programación secuencial. La integración de multiples núcleos en un solo chip ha permitido a los procesadores correr partes del programa en paralelo. Sin embargo, la explotación del enorme paralelismo disponible en muchas aplicaciones de alto rendimiento y de los datos correspondientes es difícil de conseguir usando unicamente multicores de propósito general. La aparición de aceleradores tipo streaming y de los correspondientes modelos de programación han mejorado esta situación proporcionando arquitecturas orientadas al proceso de flujos de datos. La idea básica detrás del diseño de estas arquitecturas responde a la necesidad de procesar conjuntos enormes de datos. Estos dispositivos de alto rendimiento orientados a flujos permiten el procesamiento rapido de datos mediante el uso eficiente de computación paralela y comunicación entre procesos. Los aceleradores streaming orientados a flujos, igual que en otros procesadores, consisten en diversos componentes micro-arquitectonicos como por ejemplo las estructuras de memoria, las unidades de computo, las unidades de control, los canales de Entrada/Salida y controles de Entrada/Salida, etc. Sin embargo, los requisitos del flujo de datos agregan algunas características especiales e imponen otras restricciones que afectan al rendimiento. Estos dispositivos, por lo general, ofrecen un gran número de recursos computacionales, pero obligan a reorganizar los conjuntos de datos en paralelo, maximizando la independiencia para alimentar los recursos de computación en forma de flujos. La disposición de datos en conjuntos independientes de flujos paralelos no es una tarea sencilla. Es posible que se tenga que cambiar la estructura de un algoritmo en su conjunto o, incluso, puede requerir la reescritura del algoritmo desde cero. Sin embargo, todos estos esfuerzos para la reordenación de los patrones de las aplicaciones de acceso a datos puede que no sean muy útiles para lograr un rendimiento óptimo. Esto es debido a las posibles limitaciones microarquitectonicas de la plataforma de destino para los mecanismos hardware de prefetch, el tamaño y la granularidad del almacenamiento local, y la flexibilidad para disponer de forma serial los datos en el interior del almacenamiento local. Las limitaciones de una plataforma de streaming de proposito general para el prefetching de datos, almacenamiento y demas procedimientos para organizar y mantener los datos en forma de flujos paralelos e independientes podría ser eliminado empleando técnicas a nivel micro-arquitectonico. Esto incluye el uso de memorias personalizadas especificamente para las aplicaciones en el front-end de una arquitectura streaming. El objetivo de esta tesis es presentar exploraciones arquitectónicas de los aceleradores streaming con diseños de memoria personalizados. En general, la tesis cubre tres aspectos principales de tales aceleradores. Estos aspectos se pueden clasificar como: i) Diseño de aceleradores de aplicaciones específicas con diseños de memoria personalizados, ii) diseño de aceleradores con memorias personalizadas basados en plantillas, y iii) exploraciones del espacio de diseño para dispositivos orientados a flujos con las memorias estándar y personalizadas. Esta tesis concluye con la propuesta conceptual de una Blacksmith Streaming Architecture (BSArc). El modelo de computación Blacksmith permite la adopción a nivel de hardware de un front-end de aplicación específico utilizando una GPU como back-end. Esto permite maximizar la explotación de la localidad de datos y el paralelismo a nivel de datos de una aplicación mientras que proporciona un flujo mayor de datos al back-end. Consideramos que el diseño de estos procesadores con memorias especializadas debe ser proporcionado por expertos del dominio de aplicación en la forma de plantillas.The basic concept behind the architecture of a general purpose CPU core conforms well to a serial programming model. The integration of more cores on a single chip helped CPUs in running parts of a program in parallel. However, the utilization of huge parallelism available from many high performance applications and the corresponding data is hard to achieve from these general purpose multi-cores. Streaming accelerators and the corresponding programing models improve upon this situation by providing throughput oriented architectures. The basic idea behind the design of these architectures matches the everyday increasing requirements of processing huge data sets. These high-performance throughput oriented devices help in high performance processing of data by using efficient parallel computations and streaming based communications. The throughput oriented streaming accelerators ¿ similar to the other processors ¿ consist of numerous types of micro-architectural components including the memory structures, compute units, control units, I/O channels and I/O controls etc. However, the throughput requirements add some special features and impose other restrictions for the performance purposes. These devices, normally, offer a large number of compute resources but restrict the applications to arrange parallel and maximally independent data sets to feed the compute resources in the form of streams. The arrangement of data into independent sets of parallel streams is not an easy and simple task. It may need to change the structure of an algorithm as a whole or even it can require to write a new algorithm from scratch for the target application. However, all these efforts for the re-arrangement of application data access patterns may still not be very helpful to achieve the optimal performance. This is because of the possible micro-architectural constraints of the target platform for the hardware pre-fetching mechanisms, the size and the granularity of the local storage and the flexibility in data marshaling inside the local storage. The constraints of a general purpose streaming platform on the data pre-fetching, storing and maneuvering to arrange and maintain it in the form of parallel and independent streams could be removed by employing micro-architectural level design approaches. This includes the usage of application specific customized memories in the front-end of a streaming architecture. The focus of this thesis is to present architectural explorations for the streaming accelerators using customized memory layouts. In general the thesis covers three main aspects of such streaming accelerators in this research. These aspects can be categorized as : i) Design of Application Specific Accelerators with Customized Memory Layout ii) Template Based Design Support for Customized Memory Accelerators and iii) Design Space Explorations for Throughput Oriented Devices with Standard and Customized Memories. This thesis concludes with a conceptual proposal on a Blacksmith Streaming Architecture (BSArc). The Blacksmith Computing allow the hardware-level adoption of an application specific front-end with a GPU like streaming back-end. This gives an opportunity to exploit maximum possible data locality and the data level parallelism from an application while providing a throughput natured powerful back-end. We consider that the design of these specialized memory layouts for the front-end of the device are provided by the application domain experts in the form of templates. These templates are adjustable according to a device and the problem size at the device's configuration time. The physical availability of such an architecture may still take time. However, simulation framework helps in architectural explorations to give insight into the proposal and predicts potential performance benefits for such an architecture.Postprint (published version

    Architectural explorations for streaming accelerators with customized memory layouts

    Get PDF
    El concepto básico de la arquitectura mono-nucleo en los procesadores de propósito general se ajusta bien a un modelo de programación secuencial. La integración de multiples núcleos en un solo chip ha permitido a los procesadores correr partes del programa en paralelo. Sin embargo, la explotación del enorme paralelismo disponible en muchas aplicaciones de alto rendimiento y de los datos correspondientes es difícil de conseguir usando unicamente multicores de propósito general. La aparición de aceleradores tipo streaming y de los correspondientes modelos de programación han mejorado esta situación proporcionando arquitecturas orientadas al proceso de flujos de datos. La idea básica detrás del diseño de estas arquitecturas responde a la necesidad de procesar conjuntos enormes de datos. Estos dispositivos de alto rendimiento orientados a flujos permiten el procesamiento rapido de datos mediante el uso eficiente de computación paralela y comunicación entre procesos. Los aceleradores streaming orientados a flujos, igual que en otros procesadores, consisten en diversos componentes micro-arquitectonicos como por ejemplo las estructuras de memoria, las unidades de computo, las unidades de control, los canales de Entrada/Salida y controles de Entrada/Salida, etc. Sin embargo, los requisitos del flujo de datos agregan algunas características especiales e imponen otras restricciones que afectan al rendimiento. Estos dispositivos, por lo general, ofrecen un gran número de recursos computacionales, pero obligan a reorganizar los conjuntos de datos en paralelo, maximizando la independiencia para alimentar los recursos de computación en forma de flujos. La disposición de datos en conjuntos independientes de flujos paralelos no es una tarea sencilla. Es posible que se tenga que cambiar la estructura de un algoritmo en su conjunto o, incluso, puede requerir la reescritura del algoritmo desde cero. Sin embargo, todos estos esfuerzos para la reordenación de los patrones de las aplicaciones de acceso a datos puede que no sean muy útiles para lograr un rendimiento óptimo. Esto es debido a las posibles limitaciones microarquitectonicas de la plataforma de destino para los mecanismos hardware de prefetch, el tamaño y la granularidad del almacenamiento local, y la flexibilidad para disponer de forma serial los datos en el interior del almacenamiento local. Las limitaciones de una plataforma de streaming de proposito general para el prefetching de datos, almacenamiento y demas procedimientos para organizar y mantener los datos en forma de flujos paralelos e independientes podría ser eliminado empleando técnicas a nivel micro-arquitectonico. Esto incluye el uso de memorias personalizadas especificamente para las aplicaciones en el front-end de una arquitectura streaming. El objetivo de esta tesis es presentar exploraciones arquitectónicas de los aceleradores streaming con diseños de memoria personalizados. En general, la tesis cubre tres aspectos principales de tales aceleradores. Estos aspectos se pueden clasificar como: i) Diseño de aceleradores de aplicaciones específicas con diseños de memoria personalizados, ii) diseño de aceleradores con memorias personalizadas basados en plantillas, y iii) exploraciones del espacio de diseño para dispositivos orientados a flujos con las memorias estándar y personalizadas. Esta tesis concluye con la propuesta conceptual de una Blacksmith Streaming Architecture (BSArc). El modelo de computación Blacksmith permite la adopción a nivel de hardware de un front-end de aplicación específico utilizando una GPU como back-end. Esto permite maximizar la explotación de la localidad de datos y el paralelismo a nivel de datos de una aplicación mientras que proporciona un flujo mayor de datos al back-end. Consideramos que el diseño de estos procesadores con memorias especializadas debe ser proporcionado por expertos del dominio de aplicación en la forma de plantillas.The basic concept behind the architecture of a general purpose CPU core conforms well to a serial programming model. The integration of more cores on a single chip helped CPUs in running parts of a program in parallel. However, the utilization of huge parallelism available from many high performance applications and the corresponding data is hard to achieve from these general purpose multi-cores. Streaming accelerators and the corresponding programing models improve upon this situation by providing throughput oriented architectures. The basic idea behind the design of these architectures matches the everyday increasing requirements of processing huge data sets. These high-performance throughput oriented devices help in high performance processing of data by using efficient parallel computations and streaming based communications. The throughput oriented streaming accelerators ¿ similar to the other processors ¿ consist of numerous types of micro-architectural components including the memory structures, compute units, control units, I/O channels and I/O controls etc. However, the throughput requirements add some special features and impose other restrictions for the performance purposes. These devices, normally, offer a large number of compute resources but restrict the applications to arrange parallel and maximally independent data sets to feed the compute resources in the form of streams. The arrangement of data into independent sets of parallel streams is not an easy and simple task. It may need to change the structure of an algorithm as a whole or even it can require to write a new algorithm from scratch for the target application. However, all these efforts for the re-arrangement of application data access patterns may still not be very helpful to achieve the optimal performance. This is because of the possible micro-architectural constraints of the target platform for the hardware pre-fetching mechanisms, the size and the granularity of the local storage and the flexibility in data marshaling inside the local storage. The constraints of a general purpose streaming platform on the data pre-fetching, storing and maneuvering to arrange and maintain it in the form of parallel and independent streams could be removed by employing micro-architectural level design approaches. This includes the usage of application specific customized memories in the front-end of a streaming architecture. The focus of this thesis is to present architectural explorations for the streaming accelerators using customized memory layouts. In general the thesis covers three main aspects of such streaming accelerators in this research. These aspects can be categorized as : i) Design of Application Specific Accelerators with Customized Memory Layout ii) Template Based Design Support for Customized Memory Accelerators and iii) Design Space Explorations for Throughput Oriented Devices with Standard and Customized Memories. This thesis concludes with a conceptual proposal on a Blacksmith Streaming Architecture (BSArc). The Blacksmith Computing allow the hardware-level adoption of an application specific front-end with a GPU like streaming back-end. This gives an opportunity to exploit maximum possible data locality and the data level parallelism from an application while providing a throughput natured powerful back-end. We consider that the design of these specialized memory layouts for the front-end of the device are provided by the application domain experts in the form of templates. These templates are adjustable according to a device and the problem size at the device's configuration time. The physical availability of such an architecture may still take time. However, simulation framework helps in architectural explorations to give insight into the proposal and predicts potential performance benefits for such an architecture

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Run-time management for future MPSoC platforms

    Get PDF
    In recent years, we are witnessing the dawning of the Multi-Processor Systemon- Chip (MPSoC) era. In essence, this era is triggered by the need to handle more complex applications, while reducing overall cost of embedded (handheld) devices. This cost will mainly be determined by the cost of the hardware platform and the cost of designing applications for that platform. The cost of a hardware platform will partly depend on its production volume. In turn, this means that ??exible, (easily) programmable multi-purpose platforms will exhibit a lower cost. A multi-purpose platform not only requires ??exibility, but should also combine a high performance with a low power consumption. To this end, MPSoC devices integrate computer architectural properties of various computing domains. Just like large-scale parallel and distributed systems, they contain multiple heterogeneous processing elements interconnected by a scalable, network-like structure. This helps in achieving scalable high performance. As in most mobile or portable embedded systems, there is a need for low-power operation and real-time behavior. The cost of designing applications is equally important. Indeed, the actual value of future MPSoC devices is not contained within the embedded multiprocessor IC, but in their capability to provide the user of the device with an amount of services or experiences. So from an application viewpoint, MPSoCs are designed to ef??ciently process multimedia content in applications like video players, video conferencing, 3D gaming, augmented reality, etc. Such applications typically require a lot of processing power and a signi??cant amount of memory. To keep up with ever evolving user needs and with new application standards appearing at a fast pace, MPSoC platforms need to be be easily programmable. Application scalability, i.e. the ability to use just enough platform resources according to the user requirements and with respect to the device capabilities is also an important factor. Hence scalability, ??exibility, real-time behavior, a high performance, a low power consumption and, ??nally, programmability are key components in realizing the success of MPSoC platforms. The run-time manager is logically located between the application layer en the platform layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts the platform hardware, it improves platform programmability. By deciding on resource assignment at run-time and based on the performance requirements of the user, the needs of the application and the capabilities of the platform, it contributes to ??exibility, scalability and to low power operation. As it has an arbiter function between different applications, it enables real-time behavior. This thesis details the key components of such an MPSoC run-time manager and provides a proof-of-concept implementation. These key components include application quality management algorithms linked to MPSoC resource management mechanisms and policies, adapted to the provided MPSoC platform services. First, we describe the role, the responsibilities and the boundary conditions of an MPSoC run-time manager in a generic way. This includes a de??nition of the multiprocessor run-time management design space, a description of the run-time manager design trade-offs and a brief discussion on how these trade-offs affect the key MPSoC requirements. This design space de??nition and the trade-offs are illustrated based on ongoing research and on existing commercial and academic multiprocessor run-time management solutions. Consequently, we introduce a fast and ef??cient resource allocation heuristic that considers FPGA fabric properties such as fragmentation. In addition, this thesis introduces a novel task assignment algorithm for handling soft IP cores denoted as hierarchical con??guration. Hierarchical con??guration managed by the run-time manager enables easier application design and increases the run-time spatial mapping freedom. In turn, this improves the performance of the resource assignment algorithm. Furthermore, we introduce run-time task migration components. We detail a new run-time task migration policy closely coupled to the run-time resource assignment algorithm. In addition to detailing a design-environment supported mechanism that enables moving tasks between an ISP and ??ne-grained recon??gurable hardware, we also propose two novel task migration mechanisms tailored to the Network-on-Chip environment. Finally, we propose a novel mechanism for task migration initiation, based on reusing debug registers in modern embedded microprocessors. We propose a reactive on-chip communication management mechanism. We show that by exploiting an injection rate control mechanism it is possible to provide a communication management system capable of providing a soft (reactive) QoS in a NoC. We introduce a novel, platform independent run-time algorithm to perform quality management, i.e. to select an application quality operating point at run-time based on the user requirements and the available platform resources, as reported by the resource manager. This contribution also proposes a novel way to manage the interaction between the quality manager and the resource manager. In order to have a the realistic, reproducible and ??exible run-time manager testbench with respect to applications with multiple quality levels and implementation tradev offs, we have created an input data generation tool denoted Pareto Surfaces For Free (PSFF). The the PSFF tool is, to the best of our knowledge, the ??rst tool that generates multiple realistic application operating points either based on pro??ling information of a real-life application or based on a designer-controlled random generator. Finally, we provide a proof-of-concept demonstrator that combines these concepts and shows how these mechanisms and policies can operate for real-life situations. In addition, we show that the proposed solutions can be integrated into existing platform operating systems

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network
    corecore