25 research outputs found

    NASA's Black Marble Product Suite: Validation Strategy

    Get PDF
    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500m resolution since January 2012 with data fro the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-terrain, vegetation, snow, lunar and stray light corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Current and planned validation activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at difference geographic locations and time periods representing the full range of retrieval conditions

    Estimated Time of Restoration (ETR) Guidance for Electric Distribution Networks

    Get PDF
    Electric distribution utilities have an obligation to inform the public and government regulators about when they expect to complete service restoration after a major storm. In this study, we explore methods for calculating the estimated time of restoration (ETR) from weather impacts, defined as the time it will take for 99.5% of customers to be restored. Actual data from Storm Irene (2011), the October Nor’easter (2011) and Hurricane Sandy (2012) within the Eversource Energy-Connecticut service territory were used to calibrate and test the methods; data used included predicted outages, the peak number of customers affected, a ratio of how many outages a restoration crew can repair per day, and the count of crews working per day. Data known before a storm strikes (such as predicted outages and available crews) can be used to calculate ETR and support pre-storm allocation of crews and resources, while data available immediately after the storm passes (such as customers affected) can be used as motivation for securing or releasing crews to complete the restoration in a timely manner. Used together, the methods presented in this paper will help utilities provide a reasonable, data-driven ETR without relying solely on qualitative past experiences or instinct

    Tracking electricity losses and their perceived causes using nighttime light and social media

    Full text link
    Urban environments are intricate systems where the breakdown of critical infrastructure can impact both the economic and social well-being of communities. Electricity systems hold particular significance, as they are essential for other infrastructure, and disruptions can trigger widespread consequences. Typically, assessing electricity availability requires ground-level data, a challenge in conflict zones and regions with limited access. This study shows how satellite imagery, social media, and information extraction can monitor blackouts and their perceived causes. Night-time light data (in March 2019 for Caracas, Venezuela) is used to indicate blackout regions. Twitter data is used to determine sentiment and topic trends, while statistical analysis and topic modeling delved into public perceptions regarding blackout causes. The findings show an inverse relationship between nighttime light intensity. Tweets mentioning the Venezuelan President displayed heightened negativity and a greater prevalence of blame-related terms, suggesting a perception of government accountability for the outages

    A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids

    Get PDF
    A structured collection of tools for engineering resilience and a research approach to improve the resilience of a power grid are described in this paper. The collection is organized by a two-dimensional array formed from typologies of power grid components and business processes. These two dimensions provide physical and operational outlooks, respectively, for a power grid. The approach for resilience research is based on building a simulation model of a power grid which utilizes a resilience assessment equation to assess baseline resilience to a hazards’ profile, then iteratively selects a subset of tools from the collection, and introduces these as interventions in the power grid simulation model. Calculating the difference in resilience associated with each subset supports multicriteria decision-making to find the most convenient subset of interventions for a power grid and hazards’ profile. Resilience is an emergent quality of a power grid system, and therefore resilience research and interventions must be system-driven. This paper outlines further research required prior to the practical application of this approac

    The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia

    Get PDF
    Cascading hazard processes refer to a primary trigger such as heavy rainfall, seismic activity, or snow melt, followed by a chain or web of consequences that can cause subsequent hazards influenced by a complex array of preconditions and vulnerabilities. These interact in multiple ways and can have tremendous impacts on populations proximate to or downstream of these initial triggers. High Mountain Asia (HMA) is extremely vulnerable to cascading hazard processes given the tectonic, geomorphologic, and climatic setting of the region, particularly as it relates to glacial lakes. Given the limitations of in situ surveys in steep and often inaccessible terrain, remote sensing data are a valuable resource for better understanding and quantifying these processes. The present work provides a survey of cascading hazard processes impacting HMA and how these can be characterized using remote sensing sources. We discuss how remote sensing products can be used to address these process chains, citing several examples of cascading hazard scenarios across HMA. This work also provides a perspective on the current gaps and challenges, community needs, and view forward toward improved characterization of evolving hazards and risk across HMA

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore