67 research outputs found

    Computing fast search heuristics for physics-based mobile robot motion planning

    Get PDF
    Mobile robots are increasingly being employed to assist responders in search and rescue missions. Robots have to navigate in dangerous areas such as collapsed buildings and hazardous sites, which can be inaccessible to humans. Tele-operating the robots can be stressing for the human operators, which are also overloaded with mission tasks and coordination overhead, so it is important to provide the robot with some degree of autonomy, to lighten up the task for the human operator and also to ensure robot safety. Moving robots around requires reasoning, including interpretation of the environment, spatial reasoning, planning of actions (motion), and execution. This is particularly challenging when the environment is unstructured, and the terrain is \textit{harsh}, i.e. not flat and cluttered with obstacles. Approaches reducing the problem to a 2D path planning problem fall short, and many of those who reason about the problem in 3D don't do it in a complete and exhaustive manner. The approach proposed in this thesis is to use rigid body simulation to obtain a more truthful model of the reality, i.e. of the interaction between the robot and the environment. Such a simulation obeys the laws of physics, takes into account the geometry of the environment, the geometry of the robot, and any dynamic constraints that may be in place. The physics-based motion planning approach by itself is also highly intractable due to the computational load required to perform state propagation combined with the exponential blowup of planning; additionally, there are more technical limitations that disallow us to use things such as state sampling or state steering, which are known to be effective in solving the problem in simpler domains. The proposed solution to this problem is to compute heuristics that can bias the search towards the goal, so as to quickly converge towards the solution. With such a model, the search space is a rich space, which can only contain states which are physically reachable by the robot, and also tells us enough information about the safety of the robot itself. The overall result is that by using this framework the robot engineer has a simpler job of encoding the \textit{domain knowledge} which now consists only of providing the robot geometric model plus any constraints

    Structural Analysis Algorithms for Nanomaterials

    Get PDF

    At-Most-Hexa Meshes

    Get PDF
    AbstractVolumetric polyhedral meshes are required in many applications, especially for solving partial differential equations on finite element simulations. Still, their construction bears several additional challenges compared to boundary‐based representations. Tetrahedral meshes and (pure) hex‐meshes are two popular formats in scenarios like CAD applications, offering opposite advantages and disadvantages. Hex‐meshes are more intricate to construct due to the global structure of the meshing, but feature much better regularity, alignment, are more expressive, and offer the same simulation accuracy with fewer elements. Hex‐dominant meshes, where most but not all cell elements have a hexahedral structure, constitute an attractive compromise, potentially unlocking benefits from both structures, but their generality makes their employment in downstream applications difficult. In this work, we introduce a strict subset of general hex‐dominant meshes, which we term 'at‐most‐hexa meshes', in which most cells are still hexahedral, but no cell has more than six boundary faces, and no face has more than four sides. We exemplify the ease of construction of at‐most‐hexa meshes by proposing a frugal and straightforward method to generate high‐quality meshes of this kind, starting directly from hulls or point clouds, for example, from a 3D scan. In contrast to existing methods for (pure) hexahedral meshing, ours does not require an intermediate parameterization of other costly pre‐computations and can start directly from surfaces or samples. We leverage a Lloyd relaxation process to exploit the synergistic effects of aligning an orientation field in a modified 3D Voronoi diagram using the norm for cubical cells. The extracted geometry incorporates regularity as well as feature alignment, following sharp edges and curved boundary surfaces. We introduce specialized operations on the three‐dimensional graph structure to enforce consistency during the relaxation. The resulting algorithm allows for an efficient evaluation with parallel algorithms on GPU hardware and completes even large reconstructions within minutes

    A metadata-enhanced framework for high performance visual effects

    No full text
    This thesis is devoted to reducing the interactive latency of image processing computations in visual effects. Film and television graphic artists depend upon low-latency feedback to receive a visual response to changes in effect parameters. We tackle latency with a domain-specific optimising compiler which leverages high-level program metadata to guide key computational and memory hierarchy optimisations. This metadata encodes static and dynamic information about data dependence and patterns of memory access in the algorithms constituting a visual effect – features that are typically difficult to extract through program analysis – and presents it to the compiler in an explicit form. By using domain-specific information as a substitute for program analysis, our compiler is able to target a set of complex source-level optimisations that a vendor compiler does not attempt, before passing the optimised source to the vendor compiler for lower-level optimisation. Three key metadata-supported optimisations are presented. The first is an adaptation of space and schedule optimisation – based upon well-known compositions of the loop fusion and array contraction transformations – to the dynamic working sets and schedules of a runtimeparameterised visual effect. This adaptation sidesteps the costly solution of runtime code generation by specialising static parameters in an offline process and exploiting dynamic metadata to adapt the schedule and contracted working sets at runtime to user-tunable parameters. The second optimisation comprises a set of transformations to generate SIMD ISA-augmented source code. Our approach differs from autovectorisation by using static metadata to identify parallelism, in place of data dependence analysis, and runtime metadata to tune the data layout to user-tunable parameters for optimal aligned memory access. The third optimisation comprises a related set of transformations to generate code for SIMT architectures, such as GPUs. Static dependence metadata is exploited to guide large-scale parallelisation for tens of thousands of in-flight threads. Optimal use of the alignment-sensitive, explicitly managed memory hierarchy is achieved by identifying inter-thread and intra-core data sharing opportunities in memory access metadata. A detailed performance analysis of these optimisations is presented for two industrially developed visual effects. In our evaluation we demonstrate up to 8.1x speed-ups on Intel and AMD multicore CPUs and up to 6.6x speed-ups on NVIDIA GPUs over our best hand-written implementations of these two effects. Programmability is enhanced by automating the generation of SIMD and SIMT implementations from a single programmer-managed scalar representation

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    • 

    corecore