483 research outputs found

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Efficient resilience analysis and decision-making for complex engineering systems

    Get PDF
    Modern societies around the world are increasingly dependent on the smooth functionality of progressively more complex systems, such as infrastructure systems, digital systems like the internet, and sophisticated machinery. They form the cornerstones of our technologically advanced world and their efficiency is directly related to our well-being and the progress of society. However, these important systems are constantly exposed to a wide range of threats of natural, technological, and anthropogenic origin. The emergence of global crises such as the COVID-19 pandemic and the ongoing threat of climate change have starkly illustrated the vulnerability of these widely ramified and interdependent systems, as well as the impossibility of predicting threats entirely. The pandemic, with its widespread and unexpected impacts, demonstrated how an external shock can bring even the most advanced systems to a standstill, while the ongoing climate change continues to produce unprecedented risks to system stability and performance. These global crises underscore the need for systems that can not only withstand disruptions, but also, recover from them efficiently and rapidly. The concept of resilience and related developments encompass these requirements: analyzing, balancing, and optimizing the reliability, robustness, redundancy, adaptability, and recoverability of systems -- from both technical and economic perspectives. This cumulative dissertation, therefore, focuses on developing comprehensive and efficient tools for resilience-based analysis and decision-making of complex engineering systems. The newly developed resilience decision-making procedure is at the core of these developments. It is based on an adapted systemic risk measure, a time-dependent probabilistic resilience metric, as well as a grid search algorithm, and represents a significant innovation as it enables decision-makers to identify an optimal balance between different types of resilience-enhancing measures, taking into account monetary aspects. Increasingly, system components have significant inherent complexity, requiring them to be modeled as systems themselves. Thus, this leads to systems-of-systems with a high degree of complexity. To address this challenge, a novel methodology is derived by extending the previously introduced resilience framework to multidimensional use cases and synergistically merging it with an established concept from reliability theory, the survival signature. The new approach combines the advantages of both original components: a direct comparison of different resilience-enhancing measures from a multidimensional search space leading to an optimal trade-off in terms of system resilience, and a significant reduction in computational effort due to the separation property of the survival signature. It enables that once a subsystem structure has been computed -- a typically computational expensive process -- any characterization of the probabilistic failure behavior of components can be validated without having to recompute the structure. In reality, measurements, expert knowledge, and other sources of information are loaded with multiple uncertainties. For this purpose, an efficient method based on the combination of survival signature, fuzzy probability theory, and non-intrusive stochastic simulation (NISS) is proposed. This results in an efficient approach to quantify the reliability of complex systems, taking into account the entire uncertainty spectrum. The new approach, which synergizes the advantageous properties of its original components, achieves a significant decrease in computational effort due to the separation property of the survival signature. In addition, it attains a dramatic reduction in sample size due to the adapted NISS method: only a single stochastic simulation is required to account for uncertainties. The novel methodology not only represents an innovation in the field of reliability analysis, but can also be integrated into the resilience framework. For a resilience analysis of existing systems, the consideration of continuous component functionality is essential. This is addressed in a further novel development. By introducing the continuous survival function and the concept of the Diagonal Approximated Signature as a corresponding surrogate model, the existing resilience framework can be usefully extended without compromising its fundamental advantages. In the context of the regeneration of complex capital goods, a comprehensive analytical framework is presented to demonstrate the transferability and applicability of all developed methods to complex systems of any type. The framework integrates the previously developed resilience, reliability, and uncertainty analysis methods. It provides decision-makers with the basis for identifying resilient regeneration paths in two ways: first, in terms of regeneration paths with inherent resilience, and second, regeneration paths that lead to maximum system resilience, taking into account technical and monetary factors affecting the complex capital good under analysis. In summary, this dissertation offers innovative contributions to efficient resilience analysis and decision-making for complex engineering systems. It presents universally applicable methods and frameworks that are flexible enough to consider system types and performance measures of any kind. This is demonstrated in numerous case studies ranging from arbitrary flow networks, functional models of axial compressors to substructured infrastructure systems with several thousand individual components.Moderne Gesellschaften sind weltweit zunehmend von der reibungslosen Funktionalität immer komplexer werdender Systeme, wie beispielsweise Infrastruktursysteme, digitale Systeme wie das Internet oder hochentwickelten Maschinen, abhängig. Sie bilden die Eckpfeiler unserer technologisch fortgeschrittenen Welt, und ihre Effizienz steht in direktem Zusammenhang mit unserem Wohlbefinden sowie dem Fortschritt der Gesellschaft. Diese wichtigen Systeme sind jedoch einer ständigen und breiten Palette von Bedrohungen natürlichen, technischen und anthropogenen Ursprungs ausgesetzt. Das Auftreten globaler Krisen wie die COVID-19-Pandemie und die anhaltende Bedrohung durch den Klimawandel haben die Anfälligkeit der weit verzweigten und voneinander abhängigen Systeme sowie die Unmöglichkeit einer Gefahrenvorhersage in voller Gänze eindrücklich verdeutlicht. Die Pandemie mit ihren weitreichenden und unerwarteten Auswirkungen hat gezeigt, wie ein externer Schock selbst die fortschrittlichsten Systeme zum Stillstand bringen kann, während der anhaltende Klimawandel immer wieder beispiellose Risiken für die Systemstabilität und -leistung hervorbringt. Diese globalen Krisen unterstreichen den Bedarf an Systemen, die nicht nur Störungen standhalten, sondern sich auch schnell und effizient von ihnen erholen können. Das Konzept der Resilienz und die damit verbundenen Entwicklungen umfassen diese Anforderungen: Analyse, Abwägung und Optimierung der Zuverlässigkeit, Robustheit, Redundanz, Anpassungsfähigkeit und Wiederherstellbarkeit von Systemen -- sowohl aus technischer als auch aus wirtschaftlicher Sicht. In dieser kumulativen Dissertation steht daher die Entwicklung umfassender und effizienter Instrumente für die Resilienz-basierte Analyse und Entscheidungsfindung von komplexen Systemen im Mittelpunkt. Das neu entwickelte Resilienz-Entscheidungsfindungsverfahren steht im Kern dieser Entwicklungen. Es basiert auf einem adaptierten systemischen Risikomaß, einer zeitabhängigen, probabilistischen Resilienzmetrik sowie einem Gittersuchalgorithmus und stellt eine bedeutende Innovation dar, da es Entscheidungsträgern ermöglicht, ein optimales Gleichgewicht zwischen verschiedenen Arten von Resilienz-steigernden Maßnahmen unter Berücksichtigung monetärer Aspekte zu identifizieren. Zunehmend weisen Systemkomponenten eine erhebliche Eigenkomplexität auf, was dazu führt, dass sie selbst als Systeme modelliert werden müssen. Hieraus ergeben sich Systeme aus Systemen mit hoher Komplexität. Um diese Herausforderung zu adressieren, wird eine neue Methodik abgeleitet, indem das zuvor eingeführte Resilienzrahmenwerk auf multidimensionale Anwendungsfälle erweitert und synergetisch mit einem etablierten Konzept aus der Zuverlässigkeitstheorie, der Überlebenssignatur, zusammengeführt wird. Der neue Ansatz kombiniert die Vorteile beider ursprünglichen Komponenten: Einerseits ermöglicht er einen direkten Vergleich verschiedener Resilienz-steigernder Maßnahmen aus einem mehrdimensionalen Suchraum, der zu einem optimalen Kompromiss in Bezug auf die Systemresilienz führt. Andererseits ermöglicht er durch die Separationseigenschaft der Überlebenssignatur eine signifikante Reduktion des Rechenaufwands. Sobald eine Subsystemstruktur berechnet wurde -- ein typischerweise rechenintensiver Prozess -- kann jede Charakterisierung des probabilistischen Ausfallverhaltens von Komponenten validiert werden, ohne dass die Struktur erneut berechnet werden muss. In der Realität sind Messungen, Expertenwissen sowie weitere Informationsquellen mit vielfältigen Unsicherheiten belastet. Hierfür wird eine effiziente Methode vorgeschlagen, die auf der Kombination von Überlebenssignatur, unscharfer Wahrscheinlichkeitstheorie und nicht-intrusiver stochastischer Simulation (NISS) basiert. Dadurch entsteht ein effizienter Ansatz zur Quantifizierung der Zuverlässigkeit komplexer Systeme unter Berücksichtigung des gesamten Unsicherheitsspektrums. Der neue Ansatz, der die vorteilhaften Eigenschaften seiner ursprünglichen Komponenten synergetisch zusammenführt, erreicht eine bedeutende Verringerung des Rechenaufwands aufgrund der Separationseigenschaft der Überlebenssignatur. Er erzielt zudem eine drastische Reduzierung der Stichprobengröße aufgrund der adaptierten NISS-Methode: Es wird nur eine einzige stochastische Simulation benötigt, um Unsicherheiten zu berücksichtigen. Die neue Methodik stellt nicht nur eine Neuerung auf dem Gebiet der Zuverlässigkeitsanalyse dar, sondern kann auch in das Resilienzrahmenwerk integriert werden. Für eine Resilienzanalyse von real existierenden Systemen ist die Berücksichtigung kontinuierlicher Komponentenfunktionalität unerlässlich. Diese wird in einer weiteren Neuentwicklung adressiert. Durch die Einführung der kontinuierlichen Überlebensfunktion und dem Konzept der Diagonal Approximated Signature als entsprechendes Ersatzmodell kann das bestehende Resilienzrahmenwerk sinnvoll erweitert werden, ohne seine grundlegenden Vorteile zu beeinträchtigen. Im Kontext der Regeneration komplexer Investitionsgüter wird ein umfassendes Analyserahmenwerk vorgestellt, um die Übertragbarkeit und Anwendbarkeit aller entwickelten Methoden auf komplexe Systeme jeglicher Art zu demonstrieren. Das Rahmenwerk integriert die zuvor entwickelten Methoden der Resilienz-, Zuverlässigkeits- und Unsicherheitsanalyse. Es bietet Entscheidungsträgern die Basis für die Identifikation resilienter Regenerationspfade in zweierlei Hinsicht: Zum einen im Sinne von Regenerationspfaden mit inhärenter Resilienz und zum anderen Regenerationspfade, die zu einer maximalen Systemresilienz unter Berücksichtigung technischer und monetärer Einflussgrößen des zu analysierenden komplexen Investitionsgutes führen. Zusammenfassend bietet diese Dissertation innovative Beiträge zur effizienten Resilienzanalyse und Entscheidungsfindung für komplexe Ingenieursysteme. Sie präsentiert universell anwendbare Methoden und Rahmenwerke, die flexibel genug sind, um beliebige Systemtypen und Leistungsmaße zu berücksichtigen. Dies wird in zahlreichen Fallstudien von willkürlichen Flussnetzwerken, funktionalen Modellen von Axialkompressoren bis hin zu substrukturierten Infrastruktursystemen mit mehreren tausend Einzelkomponenten demonstriert

    Approximate computing: An integrated cross-layer framework

    Get PDF
    A new design approach, called approximate computing (AxC), leverages the flexibility provided by intrinsic application resilience to realize hardware or software implementations that are more efficient in energy or performance. Approximate computing techniques forsake exact (numerical or Boolean) equivalence in the execution of some of the application’s computations, while ensuring that the output quality is acceptable. While early efforts in approximate computing have demonstrated great potential, they consist of ad hoc techniques applied to a very narrow set of applications, leaving in question the applicability of approximate computing in a broader context. The primary objective of this thesis is to develop an integrated cross-layer approach to approximate computing, and to thereby establish its applicability to a broader range of applications. The proposed framework comprises of three key components: (i) At the circuit level, systematic approaches to design approximate circuits, or circuits that realize a slightly modified function with improved efficiency, (ii) At the architecture level, utilize approximate circuits to build programmable approximate processors, and (iii) At the software level, methods to apply approximate computing to machine learning classifiers, which represent an important class of applications that are being utilized across the computing spectrum. Towards this end, the thesis extends the state-of-the-art in approximate computing in the following important directions. Synthesis of Approximate Circuits: First, the thesis proposes a rigorous framework for the automatic synthesis of approximate circuits , which are the hardware building blocks of approximate computing platforms. Designing approximate circuits involves making judicious changes to the function implemented by the circuit such that its hardware complexity is lowered without violating the specified quality constraint. Inspired by classical approaches to Boolean optimization in logic synthesis, the thesis proposes two synthesis tools called SALSA and SASIMI that are general, i.e., applicable to any given circuit and quality specification. The framework is further extended to automatically design quality configurable circuits , which are approximate circuits with the capability to reconfigure their quality at runtime. Over a wide range of arithmetic circuits, complex modules and complete datapaths, the circuits synthesized using the proposed framework demonstrate significant benefits in area and energy. Programmable AxC Processors: Next, the thesis extends approximate computing to the realm of programmable processors by introducing the concept of quality programmable processors (QPPs). A key principle of QPPs is that the notion of quality is explicitly codified in their HW/SW interface i.e., the instruction set. Instructions in the ISA are extended with quality fields, enabling software to specify the accuracy level that must be met during their execution. The micro-architecture is designed with hardware mechanisms to understand these quality specifications and translate them into energy savings. As a first embodiment of QPPs, the thesis presents a quality programmable 1D/2D vector processor QP-Vec, which contains a 3-tiered hierarchy of processing elements. Based on an implementation of QP-Vec with 289 processing elements, energy benefits up to 2.5X are demonstrated across a wide range of applications. Software and Algorithms for AxC: Finally, the thesis addresses the problem of applying approximate computing to an important class of applications viz. machine learning classifiers such as deep learning networks. To this end, the thesis proposes two approaches—AxNN and scalable effort classifiers. Both approaches leverage domain- specific insights to transform a given application to an energy-efficient approximate version that meets a specified application output quality. In the context of deep learning networks, AxNN adapts backpropagation to identify neurons that contribute less significantly to the network’s accuracy, approximating these neurons (e.g., by using lower precision), and incrementally re-training the network to mitigate the impact of approximations on output quality. On the other hand, scalable effort classifiers leverage the heterogeneity in the inherent classification difficulty of inputs to dynamically modulate the effort expended by machine learning classifiers. This is achieved by building a chain of classifiers of progressively growing complexity (and accuracy) such that the number of stages used for classification scale with input difficulty. Scalable effort classifiers yield substantial energy benefits as a majority of the inputs require very low effort in real-world datasets. In summary, the concepts and techniques presented in this thesis broaden the applicability of approximate computing, thus taking a significant step towards bringing approximate computing to the mainstream. (Abstract shortened by ProQuest.

    Annotated Bibliography: Anticipation

    Get PDF

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

    Get PDF
    Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments

    Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends

    Get PDF
    Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks
    • …
    corecore