317 research outputs found

    LSI/VLSI design for testability analysis and general approach

    Get PDF
    The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented

    Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation

    Get PDF
    The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    VLSI design of high-speed adders for digital signal processing applications.

    Get PDF

    The Automatic Synthesis of Fault Tolerant and Fault Secure VLSI Systems

    Get PDF
    This thesis investigates the design of fault tolerant and fault secure (FTFS) systems within the framework of silicon compilation. Automatic design modification is used to introduce FTFS characteristics into a design. A taxonomy of FTFS techniques is introduced and is used to identify a number of features which an "automatic design for FTFS" system should exhibit. A silicon compilation system, Chip Churn 2 (CC2), has been implemented and has been used to demonstrate the feasibility of automatic design of FTFS systems. The CC2 system provides a design language, simulation facilities and a back-end able to produce CMOS VLSI designs. A number of FTFS design methods have been implemented within the CC2 environment; these methods range from triple modular redundancy to concurrent parity code checking. The FTFS design methods can be applied automatically to general designs in order to realise them as FTFS systems. A number of example designs are presented; these are used to illustrate the FTFS modification techniques which have been implemented. Area results for CMOS devices are presented; this allows the modification methods to be compared. A number of problems arising from the methods are highlighted and some solutions suggested

    Design of On-Chip Self-Testing Signature Register

    Get PDF
    Over the last few years, scan test has turn out to be too expensive to implement for industry standard designs due to increasing test data volume and test time. The test cost of a chip is mainly governed by the resource utilization of Automatic Test Equipment (ATE). Also, it directly depends upon test time that includes time required to load test program, to apply test vectors and to analyze generated test response of the chip. An issue of test time and data volume is increasingly appealing designers to use on-chip test data compactors, either on input side or output side or both. Such techniques significantly address the former issues but have little hold over increasing number of input-outputs under test mode. Further, test pins on DUT are increasing over the generations. Thus, scan channels on test floor are falling short in number for placement of such ICs. To address issues discussed above, we introduce an on-chip self-testing signature register. It comprises a response compactor and a comparator. The compactor compacts large chunk of response data to a small test signature whereas the comparator compares this test signature with desired one. The overall test result for the design is generated on single output pin. Being no storage of test response is demanded, the considerable reduction in ATE memory can be observed. Also, with only single pin to be monitored for test result, the number of tester channels and compare edges on ATE side significantly reduce at the end of the test. This cuts down maintenance and usage cost of test floor and increases its life time. Furthermore reduction in test pins gives scope for DFT engineers to increase number of scan chains so as to further reduce test time

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    The Telecommunications and Data Acquisition Report

    Get PDF
    Deep Space Network advanced systems, very large scale integration architecture for decoders, radar interface and control units, microwave time delays, microwave antenna holography, and a radio frequency interference survey are among the topics discussed
    corecore