12 research outputs found

    Signal reconstruction in structures with two channels

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaEm sistemas ATM e transmissões em tempo real através de redes IP, os dados são transmitidos em pacotes de informação. Os pacotes perdidos ou muito atrasados levam à perda de informação em posições conhecidas (apagamentos). Contudo, em algumas situações as posições dos erros não são conhecidas e, portanto, a detecção dos erros tem que ser realizada usando um polinómio conhecido. A detecção e correcção de erros são estudadas para sinais digitais em códigos DFT em dois canais que apresentam muito melhor estabilidade que os respectivos códigos DFT num único canal. Para a estrutura de dois canais, um canal processa um código DFT normal, quanto que o outro canal inclui uma permutação, a razão principal para a melhoria na estabilidade. A permutação introduz aleatoriedade e é esta aleatoriedade que é responsável pela boa estabilidade destes códigos. O estudo dos códigos aleatórios vêm confirmar esta afirmação. Para sinais analógicos, foca-se a amostragem funcional e derivativa, onde um canal processa amostras do sinal e o outro processa amostras da derivada do sinal. A expansão sobreamostrada é apresentada e a recuperação de apagamentos é estudada. Neste caso, a estabilidade para a esturtura em dois canais quando a perda de amostras afecta ambos os canais é, em geral, muito pobre. Adicionalmente, a reconstrução de sinais tanto analógicos como digitais é tratada para o modelo do conversor integrate-and-fire. A reconstrução faz uso dos tempos de acção e de valores limites inerentes ao modelo e é viável por meio de um método iterativo baseado em projecções em conjuntos convexos (POCS).In ATM as in real time transmissions over IP networks, the data are transmitted packet by packet. Lost or highly delayed packets lead to lost information in known locations (erasures). However, in some situations the error locations are not known and, therefore, error detection must be performed using a known polynomial. Error detection and correction are studied for digital signals in two-channel DFT codes which presents a much better stability than their single channel counterparts. For the two-channel structure, one channel processes an ordinary DFT code, while the other channel includes an interleaver, the main reason for the improvement in stability. The interleaver introduces randomness and it is this randomness that is responsible for the good stability of these codes. The study of random codes helps confirm this statement. For analogical signals, the focus is given to function and derivative sampling, where one channel processes samples of the signal and the other processes samples of the derivative of the signal. The oversampled expansion is presented and erasure recovery is studied. In this case, the stability of the twochannel structure when sample loss affects both channels is, in general, very poor. Additionally, the reconstruction of analogical as well as digital signals is dealt with for the integrate-and-fire converter model. The reconstruction makes use of the firing times and the threshold values inherent to the model and is viable by means of an iterative method based on projections onto convex sets (POCS)

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Dynamic information and constraints in source and channel coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 237-251).This thesis explore dynamics in source coding and channel coding. We begin by introducing the idea of distortion side information, which does not directly depend on the source but instead affects the distortion measure. Such distortion side information is not only useful at the encoder but under certain conditions knowing it at the encoder is optimal and knowing it at the decoder is useless. Thus distortion side information is a natural complement to Wyner-Ziv side information and may be useful in exploiting properties of the human perceptual system as well as in sensor or control applications. In addition to developing the theoretical limits of source coding with distortion side information, we also construct practical quantizers based on lattices and codes on graphs. Our use of codes on graphs is also of independent interest since it highlights some issues in translating the success of turbo and LDPC codes into the realm of source coding. Finally, to explore the dynamics of side information correlated with the source, we consider fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback).(cont.) Using duality, we develop a linear complexity algorithm which exploits the feedforward information to achieve the rate-distortion bound. The second part of the thesis focuses on channel dynamics in communication by introducing a new system model to study delay in streaming applications. We first consider an adversarial channel model where at any time the channel may suffer a burst of degraded performance (e.g., due to signal fading, interference, or congestion) and prove a coding theorem for the minimum decoding delay required to recover from such a burst. Our coding theorem illustrates the relationship between the structure of a code, the dynamics of the channel, and the resulting decoding delay. We also consider more general channel dynamics. Specifically, we prove a coding theorem establishing that, for certain collections of channel ensembles, delay-universal codes exist that simultaneously achieve the best delay for any channel in the collection. Practical constructions with low encoding and decoding complexity are described for both cases.(cont.) Finally, we also consider architectures consisting of both source and channel coding which deal with channel dynamics by spreading information over space, frequency, multiple antennas, or alternate transmission paths in a network to avoid coding delays. Specifically, we explore whether the inherent diversity in such parallel channels should be exploited at the application layer via multiple description source coding, at the physical layer via parallel channel coding, or through some combination of joint source-channel coding. For on-off channel models application layer diversity architectures achieve better performance while for channels with a continuous range of reception quality (e.g., additive Gaussian noise channels with Rayleigh fading), the reverse is true. Joint source-channel coding achieves the best of both by performing as well as application layer diversity for on-off channels and as well as physical layer diversity for continuous channels.by Emin Martinian.Ph.D

    A permutation coding and OFDM-MFSK modulation scheme for power-line communication

    Get PDF
    Power-line communication offers a networking communication over existing power lines and finds important applications in smart grid, home and business automation and automatic meter reading. However, the power-line channel is one of the harshest known communication channels currently in use and it requires robust forward error correction techniques. Powerful decoding algorithms tend to be complex and increase latency while robust modulation schemes offer lower data rates and reduced spectral efficiency. The presented research is a frequency domain error-correcting scheme that extends the existing narrowband power-line communication forward error correction concatenated scheme of Reed-Solomon and Convolutional codes in the OFDM framework. It introduces a combination of M-ary phase shift keying as an OFDM subcarrier modulation scheme and a permutation sequence encoding between subcarriers to combat narrowband interference and carrier frequency offsets by introducing frequency diversity. The scheme offers improved BER performance over OFDM and OFDM-MFSK in high narrowband disturbance and impulse noise probability channels and improves the performance of OFDM in the presence of carrier frequency offsets
    corecore