31 research outputs found

    Producing Acoustic-Prosodic Entrainment in a Robotic Learning Companion to Build Learner Rapport

    Get PDF
    abstract: With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes. This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of speech, such as tone of voice or loudness, to one another over the course of a conversation. Correlated with liking and task success, a dialogue system which entrains may enhance rapport. Entrainment, however, is very challenging to model. People entrain on different features in many ways and how to design entrainment to build rapport is unclear. The first goal of this dissertation is to explore how acoustic-prosodic entrainment can be modeled to build rapport. Towards this goal, this work presents a series of studies comparing, evaluating, and iterating on the design of entrainment, motivated and informed by human-human dialogue. These models of entrainment are implemented in the dialogue system of a robotic learning companion. Learning companions are educational agents that engage students socially to increase motivation and facilitate learning. As a learning companion’s ability to be socially responsive increases, so do vital learning outcomes. A second goal of this dissertation is to explore the effects of entrainment on concrete outcomes such as learning in interactions with robotic learning companions. This dissertation results in contributions both technical and theoretical. Technical contributions include a robust and modular dialogue system capable of producing prosodic entrainment and other socially-responsive behavior. One of the first systems of its kind, the results demonstrate that an entraining, social learning companion can positively build rapport and increase learning. This dissertation provides support for exploring phenomena like entrainment to enhance factors such as rapport and learning and provides a platform with which to explore these phenomena in future work.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Complaint sequences across proficiency levels: the contribution of pragmatics and multimodality

    Get PDF
    El objetivo de esta tesis es contribuir a la investigación en pragmática del interlenguaje y multimodalidad. El objetivo principal es explorar como aprendices de lengua en distintos niveles de lengua realizan quejas desde la perspectiva del análisis de la conversación (Kasper, 2006). Un análisis multimodal de la conversación se ha realizado para examinar cómo diferentes modos interactúan en la construcción de la conversación. El marco teórico presentado en el estudio se centró en la naturaleza de la pragmática (Crystal, 1985; Leech, 1983; Thomas, 1983), pragmática del interlenguaje (Kasper & Blum-Kulka, 1993), análisis de la conversación (Sacks et al., 1974), nivel de lengua (e.g. Al-Gahtani & Roever, 2012), el acto de habla de las quejas (e.g. Trosborg, 1995; Laforest, 2002), y la multimodalidad (Jewitt, et al., 2016).The aim of this thesis is to contribute to the research on interlanguage pragmatics and multimodality. The main purpose is to explore how learners at different proficiency levels perform complaints and responses to complaints following a conversation analysis approach (Kasper, 2006). Furthermore, a multimodal conversation analysis is conducted in order to examine how different modes interact in the construction of the conversation. To meet the objectives of the thesis, the theoretical framework presented in the study focused on the nature of pragmatics (Crystal, 1985; Leech, 1983; Thomas, 1983), interlanguage pragmatics (Kasper & Blum-Kulka, 1993), conversation analysis (Sacks et al., 1974), proficiency (e.g. Al-Gahtani & Roever, 2012), the speech act of complaints (e.g. Trosborg, 1995; Laforest, 2002), and multimodality (Jewitt, et al., 2016). This framework served to explore participants' performance of complaints sequences at different proficiency levels, specific conversational features such as backchannel and overlapping, paralanguage and kinesics

    Synthesis of listener vocalizations : towards interactive speech synthesis

    Get PDF
    Spoken and multi-modal dialogue systems start to use listener vocalizations, such as uh-huh and mm-hm, for natural interaction. Generation of listener vocalizations is one of the major objectives of emotionally colored conversational speech synthesis. Success in this endeavor depends on the answers to three questions: Where to synthesize a listener vocalization? What meaning should be conveyed through the synthesized vocalization? And, how to realize an appropriate listener vocalization with the intended meaning? This thesis addresses the latter question. The investigation starts with proposing a three-stage approach: (i) data collection, (ii) annotation, and (iii) realization. The first stage presents a method to collect natural listener vocalizations from German and British English professional actors in a recording studio. In the second stage, we explore a methodology for annotating listener vocalizations -- meaning and behavior (form) annotation. The third stage proposes a realization strategy that uses unit selection and signal modification techniques to generate appropriate listener vocalizations upon user requests. Finally, we evaluate naturalness and appropriateness of synthesized vocalizations using perception studies. The work is implemented in the open source MARY text-to-speech framework, and it is integrated into the SEMAINE project\u27s Sensitive Artificial Listener (SAL) demonstrator.Dialogsysteme nutzen zunehmend Hörer-Vokalisierungen, wie z.B. a-ha oder mm-hm, für natürliche Interaktion. Die Generierung von Hörer-Vokalisierungen ist eines der zentralen Ziele emotional gefärbter, konversationeller Sprachsynthese. Ein Erfolg in diesem Unterfangen hängt von den Antworten auf drei Fragen ab: Wo bzw. wann sollten Vokalisierungen synthetisiert werden? Welche Bedeutung sollte in den synthetisierten Vokalisierungen vermittelt werden? Und wie können angemessene Hörer-Vokalisierungen mit der intendierten Bedeutung realisiert werden? Diese Arbeit widmet sich der letztgenannten Frage. Die Untersuchung erfolgt in drei Schritten: (i) Korpuserstellung; (ii) Annotation; und (iii) Realisierung. Der erste Schritt präsentiert eine Methode zur Sammlung natürlicher Hörer-Vokalisierungen von deutschen und britischen Profi-Schauspielern in einem Tonstudio. Im zweiten Schritt wird eine Methodologie zur Annotation von Hörer-Vokalisierungen erarbeitet, die sowohl Bedeutung als auch Verhalten (Form) umfasst. Der dritte Schritt schlägt ein Realisierungsverfahren vor, die Unit-Selection-Synthese mit Signalmodifikationstechniken kombiniert, um aus Nutzeranfragen angemessene Hörer-Vokalisierungen zu generieren. Schließlich werden Natürlichkeit und Angemessenheit synthetisierter Vokalisierungen mit Hilfe von Hörtests evaluiert. Die Methode wurde im Open-Source-Sprachsynthesesystem MARY implementiert und in den Sensitive Artificial Listener-Demonstrator im Projekt SEMAINE integriert

    Vocal accommodation in human-computer interaction : modeling and integration into spoken dialogue systems

    Get PDF
    With the rapidly increasing usage of voice-activated devices worldwide, verbal communication with computers is steadily becoming more common. Although speech is the principal natural manner of human communication, it is still challenging for computers, and users had been growing accustomed to adjusting their speaking style for computers. Such adjustments occur naturally, and typically unconsciously, in humans during an exchange to control the social distance between the interlocutors and improve the conversation’s efficiency. This phenomenon is called accommodation and it occurs on various modalities in human communication, like hand gestures, facial expressions, eye gaze, lexical and grammatical choices, and others. Vocal accommodation deals with phonetic-level changes occurring in segmental and suprasegmental features. A decrease in the difference between the speakers’ feature realizations results in convergence, while an increasing distance leads to divergence. The lack of such mutual adjustments made naturally by humans in computers’ speech creates a gap between human-human and human-computer interactions. Moreover, voice-activated systems currently speak in exactly the same manner to all users, regardless of their speech characteristics or realizations of specific features. Detecting phonetic variations and generating adaptive speech output would enhance user personalization, offer more human-like communication, and ultimately should improve the overall interaction experience. Thus, investigating these aspects of accommodation will help to understand and improving human-computer interaction. This thesis provides a comprehensive overview of the required building blocks for a roadmap toward the integration of accommodation capabilities into spoken dialogue systems. These include conducting human-human and human-computer interaction experiments to examine the differences in vocal behaviors, approaches for modeling these empirical findings, methods for introducing phonetic variations in synthesized speech, and a way to combine all these components into an accommodative system. While each component is a wide research field by itself, they depend on each other and hence should be jointly considered. The overarching goal of this thesis is therefore not only to show how each of the aspects can be further developed, but also to demonstrate and motivate the connections between them. A special emphasis is put throughout the thesis on the importance of the temporal aspect of accommodation. Humans constantly change their speech over the course of a conversation. Therefore, accommodation processes should be treated as continuous, dynamic phenomena. Measuring differences in a few discrete points, e.g., beginning and end of an interaction, may leave many accommodation events undiscovered or overly smoothed. To justify the effort of introducing accommodation in computers, it should first be proven that humans even show any phonetic adjustments when talking to a computer as they do with a human being. As there is no definitive metric for measuring accommodation and evaluating its quality, it is important to empirically study humans productions to later use as references for possible behaviors. In this work, this investigation encapsulates different experimental configurations to achieve a better picture of accommodation effects. First, vocal accommodation was inspected where it naturally occurs, namely in spontaneous human-human conversations. For this purpose, a collection of real-world sales conversations, each with a different representative-prospect pair, was collected and analyzed. These conversations offer a glance into accommodation effects in authentic, unscripted interactions with the common goal of negotiating a deal on the one hand, but with the individual facet of each side of trying to get the best terms on the other hand. The conversations were analyzed using cross-correlation and time series techniques to capture the change dynamics over time. It was found that successful conversations are distinguishable from failed ones by multiple measures. Furthermore, the sales representative proved to be better at leading the vocal changes, i.e., making the prospect follow their speech styles rather than the other way around. They also showed a stronger tendency to take that lead at an earlier stage, all the more so in successful conversations. The fact that accommodation occurs more by trained speakers and improves their performances fits anecdotal best practices of sales experts, which are now also proven scientifically. Following these results, the next experiment came closer to the final goal of this work and investigated vocal accommodation effects in human-computer interaction. This was done via a shadowing experiment, which offers a controlled setting for examining phonetic variations. As spoken dialogue systems with such accommodation capabilities (like this work aims to achieve) do not exist yet, a simulated system was used to introduce these changes to the participants, who believed they help with the testing of a language learning tutoring system. After determining their preference concerning three segmental phonetic features, participants were listen-ing to either natural or synthesized voices of male and female speakers, which produced the participants’ dispreferred variation of the aforementioned features. Accommodation occurred in all cases, but the natural voices triggered stronger effects. Nevertheless, it can be concluded that participants were accommodating toward synthetic voices as well, which means that social mechanisms are applied in humans also when speaking with computer-based interlocutors. The shadowing paradigm was utilized also to test whether accommodation is a phenomenon associated only with speech or with other vocal productions as well. To that end, accommodation in the singing of familiar and novel music was examined. Interestingly, accommodation was found in both cases, though in different ways. While participants seemed to use the familiar piece merely as a reference for singing more accurately, the novel piece became the goal for complete replicate. For example, one difference was that mostly pitch corrections were introduced in the former case, while in the latter also key and rhythmic patterns were adopted. Some of those findings were expected and they show that people’s more salient features are also harder to modify using external auditory influence. Lastly, a multiparty experiment with spontaneous human-human-computer interactions was carried out to compare accommodation in human-directed and computer-directed speech. The participants solved tasks for which they needed to talk both with a confederate and with an agent. This allows a direct comparison of their speech based on the addressee within the same conversation, which has not been done so far. Results show that some participants’ vocal behavior changed similarly when talking to the confederate and the agent, while others’ speech varied only with the confederate. Further analysis found that the greatest factor for this difference was the order in which the participants talked with the interlocutors. Apparently, those who first talked to the agent alone saw it more as a social actor in the conversation, while those who interacted with it after talking to the confederate treated it more as a means to achieve a goal, and thus behaved differently with it. In the latter case, the variations in the human-directed speech were much more prominent. Differences were also found between the analyzed features, but the task type did not influence the degree of accommodation effects. The results of these experiments lead to the conclusion that vocal accommodation does occur in human-computer interactions, even if often to lesser degrees. With the question of whether people accommodate to computer-based interlocutors as well answered, the next step would be to describe accommodative behaviors in a computer-processable manner. Two approaches are proposed here: computational and statistical. The computational model aims to capture the presumed cognitive process associated with accommodation in humans. This comprises various steps, such as detecting the variable feature’s sound, adding instances of it to the feature’s mental memory, and determining how much the sound will change while taking into account both its current representation and the external input. Due to its sequential nature, this model was implemented as a pipeline. Each of the pipeline’s five steps corresponds to a specific part of the cognitive process and can have one or more parameters to control its output (e.g., the size of the feature’s memory or the accommodation pace). Using these parameters, precise accommodative behaviors can be crafted while applying expert knowledge to motivate the chosen parameter values. These advantages make this approach suitable for experimentation with pre-defined, deterministic behaviors where each step can be changed individually. Ultimately, this approach makes a system vocally responsive to users’ speech input. The second approach grants more evolved behaviors, by defining different core behaviors and adding non-deterministic variations on top of them. This resembles human behavioral patterns, as each person has a base way of accommodating (or not accommodating), which may arbitrarily change based on the specific circumstances. This approach offers a data-driven statistical way to extract accommodation behaviors from a given collection of interactions. First, the target feature’s values of each speaker in an interaction are converted into continuous interpolated lines by drawing one sample from the posterior distribution of a Gaussian process conditioned on the given values. Then, the gradients of these lines, which represent rates of mutual change, are used to defined discrete levels of change based on their distribution. Finally, each level is assigned a symbol, which ultimately creates a symbol sequence representation for each interaction. The sequences are clustered so that each cluster stands for a type of behavior. The sequences of a cluster can then be used to calculate n-gram probabilities that enable the generation of new sequences of the captured behavior. The specific output value is sampled from the range corresponding to the generated symbol. With this approach, accommodation behaviors are extracted directly from data, as opposed to manually crafting them. However, it is harder to describe what exactly these behaviors represent and motivate the use of one of them over the other. To bridge this gap between these two approaches, it is also discussed how they can be combined to benefit from the advantages of both. Furthermore, to generate more structured behaviors, a hierarchy of accommodation complexity levels is suggested here, from a direct adoption of users’ realizations, via specified responsiveness, and up to independent core behaviors with non-deterministic variational productions. Besides a way to track and represent vocal changes, an accommodative system also needs a text-to-speech component that is able to realize those changes in the system’s speech output. Speech synthesis models are typically trained once on data with certain characteristics and do not change afterward. This prevents such models from introducing any variation in specific sounds and other phonetic features. Two methods for directly modifying such features are explored here. The first is based on signal modifications applied to the output signal after it was generated by the system. The processing is done between the timestamps of the target features and uses pre-defined scripts that modify the signal to achieve the desired values. This method is more suitable for continuous features like vowel quality, especially in the case of subtle changes that do not necessarily lead to a categorical sound change. The second method aims to capture phonetic variations in the training data. To that end, a training corpus with phonemic representations is used, as opposed to the regular graphemic representations. This way, the model can learn more direct relations between phonemes and sound instead of surface forms and sound, which, depending on the language, might be more complex and depend on their surrounding letters. The target variations themselves don’t necessarily need to be explicitly present in the training data, all time the different sounds are naturally distinguishable. In generation time, the current target feature’s state determines the phoneme to use for generating the desired sound. This method is suitable for categorical changes, especially for contrasts that naturally exist in the language. While both methods have certain limitations, they provide a proof of concept for the idea that spoken dialogue systems may phonetically adapt their speech output in real-time and without re-training their text-to-speech models. To combine the behavior definitions and the speech manipulations, a system is required, which can connect these elements to create a complete accommodation capability. The architecture suggested here extends the standard spoken dialogue system with an additional module, which receives the transcribed speech signal from the speech recognition component without influencing the input to the language understanding component. While language the understanding component uses only textual transcription to determine the user’s intention, the added component process the raw signal along with its phonetic transcription. In this extended architecture, the accommodation model is activated in the added module and the information required for speech manipulation is sent to the text-to-speech component. However, the text-to-speech component now has two inputs, viz. the content of the system’s response coming from the language generation component and the states of the defined target features from the added component. An implementation of a web-based system with this architecture is introduced here, and its functionality is showcased by demonstrating how it can be used to conduct a shadowing experiment automatically. This has two main advantage: First, since the system recognizes the participants’ phonetic variations and automatically selects the appropriate variation to use in its response, the experimenter saves time and prevents manual annotation errors. The experimenter also automatically gains additional information, like exact timestamps of utterances, real-time visualization of the interlocutors’ productions, and the possibility to replay and analyze the interaction after the experiment is finished. The second advantage is scalability. Multiple instances of the system can run on a server and be accessed by multiple clients at the same time. This not only saves time and the logistics of bringing participants into a lab, but also allows running the experiment with different configurations (e.g., other parameter values or target features) in a controlled and reproducible way. This completes a full cycle from examining human behaviors to integrating accommodation capabilities. Though each part of it can undoubtedly be further investigated, the emphasis here is on how they depend and connect to each other. Measuring changes features without showing how they can be modeled or achieving flexible speech synthesis without considering the desired final output might not lead to the final goal of introducing accommodation capabilities into computers. Treating accommodation in human-computer interaction as one large process rather than isolated sub-problems lays the ground for more comprehensive and complete solutions in the future.Heutzutage wird die verbale Interaktion mit Computern immer gebräuchlicher, was der rasant wachsenden Anzahl von sprachaktivierten Geräten weltweit geschuldet ist. Allerdings stellt die computerseitige Handhabung gesprochener Sprache weiterhin eine große Herausforderung dar, obwohl sie die bevorzugte Art zwischenmenschlicher Kommunikation repräsentiert. Dieser Umstand führt auch dazu, dass Benutzer ihren Sprachstil an das jeweilige Gerät anpassen, um diese Handhabung zu erleichtern. Solche Anpassungen kommen in menschlicher gesprochener Sprache auch in der zwischenmenschlichen Kommunikation vor. Üblicherweise ereignen sie sich unbewusst und auf natürliche Weise während eines Gesprächs, etwa um die soziale Distanz zwischen den Gesprächsteilnehmern zu kontrollieren oder um die Effizienz des Gesprächs zu verbessern. Dieses Phänomen wird als Akkommodation bezeichnet und findet auf verschiedene Weise während menschlicher Kommunikation statt. Sie äußert sich zum Beispiel in der Gestik, Mimik, Blickrichtung oder aber auch in der Wortwahl und dem verwendeten Satzbau. Vokal- Akkommodation beschäftigt sich mit derartigen Anpassungen auf phonetischer Ebene, die sich in segmentalen und suprasegmentalen Merkmalen zeigen. Werden Ausprägungen dieser Merkmale bei den Gesprächsteilnehmern im Laufe des Gesprächs ähnlicher, spricht man von Konvergenz, vergrößern sich allerdings die Unterschiede, so wird dies als Divergenz bezeichnet. Dieser natürliche gegenseitige Anpassungsvorgang fehlt jedoch auf der Seite des Computers, was zu einer Lücke in der Mensch-Maschine-Interaktion führt. Darüber hinaus verwenden sprachaktivierte Systeme immer dieselbe Sprachausgabe und ignorieren folglich etwaige Unterschiede zum Sprachstil des momentanen Benutzers. Die Erkennung dieser phonetischen Abweichungen und die Erstellung von anpassungsfähiger Sprachausgabe würden zur Personalisierung dieser Systeme beitragen und könnten letztendlich die insgesamte Benutzererfahrung verbessern. Aus diesem Grund kann die Erforschung dieser Aspekte von Akkommodation helfen, Mensch-Maschine-Interaktion besser zu verstehen und weiterzuentwickeln. Die vorliegende Dissertation stellt einen umfassenden Überblick zu Bausteinen bereit, die nötig sind, um Akkommodationsfähigkeiten in Sprachdialogsysteme zu integrieren. In diesem Zusammenhang wurden auch interaktive Mensch-Mensch- und Mensch- Maschine-Experimente durchgeführt. In diesen Experimenten wurden Differenzen der vokalen Verhaltensweisen untersucht und Methoden erforscht, wie phonetische Abweichungen in synthetische Sprachausgabe integriert werden können. Um die erhaltenen Ergebnisse empirisch auswerten zu können, wurden hierbei auch verschiedene Modellierungsansätze erforscht. Fernerhin wurde der Frage nachgegangen, wie sich die betreffenden Komponenten kombinieren lassen, um ein Akkommodationssystem zu konstruieren. Jeder dieser Aspekte stellt für sich genommen bereits einen überaus breiten Forschungsbereich dar. Allerdings sind sie voneinander abhängig und sollten zusammen betrachtet werden. Aus diesem Grund liegt ein übergreifender Schwerpunkt dieser Dissertation darauf, nicht nur aufzuzeigen, wie sich diese Aspekte weiterentwickeln lassen, sondern auch zu motivieren, wie sie zusammenhängen. Ein weiterer Schwerpunkt dieser Arbeit befasst sich mit der zeitlichen Komponente des Akkommodationsprozesses, was auf der Beobachtung fußt, dass Menschen im Laufe eines Gesprächs ständig ihren Sprachstil ändern. Diese Beobachtung legt nahe, derartige Prozesse als kontinuierliche und dynamische Prozesse anzusehen. Fasst man jedoch diesen Prozess als diskret auf und betrachtet z.B. nur den Beginn und das Ende einer Interaktion, kann dies dazu führen, dass viele Akkommodationsereignisse unentdeckt bleiben oder übermäßig geglättet werden. Um die Entwicklung eines vokalen Akkommodationssystems zu rechtfertigen, muss zuerst bewiesen werden, dass Menschen bei der vokalen Interaktion mit einem Computer ein ähnliches Anpassungsverhalten zeigen wie bei der Interaktion mit einem Menschen. Da es keine eindeutig festgelegte Metrik für das Messen des Akkommodationsgrades und für die Evaluierung der Akkommodationsqualität gibt, ist es besonders wichtig, die Sprachproduktion von Menschen empirisch zu untersuchen, um sie als Referenz für mögliche Verhaltensweisen anzuwenden. In dieser Arbeit schließt diese Untersuchung verschiedene experimentelle Anordnungen ein, um einen besseren Überblick über Akkommodationseffekte zu erhalten. In einer ersten Studie wurde die vokale Akkommodation in einer Umgebung untersucht, in der sie natürlich vorkommt: in einem spontanen Mensch-Mensch Gespräch. Zu diesem Zweck wurde eine Sammlung von echten Verkaufsgesprächen gesammelt und analysiert, wobei in jedem dieser Gespräche ein anderes Handelsvertreter-Neukunde Paar teilgenommen hatte. Diese Gespräche verschaffen einen Einblick in Akkommodationseffekte während spontanen authentischen Interaktionen, wobei die Gesprächsteilnehmer zwei Ziele verfolgen: zum einen soll ein Geschäft verhandelt werden, zum anderen möchte aber jeder Teilnehmer für sich die besten Bedingungen aushandeln. Die Konversationen wurde durch das Kreuzkorrelation-Zeitreihen-Verfahren analysiert, um die dynamischen Änderungen im Zeitverlauf zu erfassen. Hierbei kam zum Vorschein, dass sich erfolgreiche Konversationen von fehlgeschlagenen Gesprächen deutlich unterscheiden lassen. Überdies wurde festgestellt, dass die Handelsvertreter die treibende Kraft von vokalen Änderungen sind, d.h. sie können die Neukunden eher dazu zu bringen, ihren Sprachstil anzupassen, als andersherum. Es wurde auch beobachtet, dass sie diese Akkommodation oft schon zu einem frühen Zeitpunkt auslösen, was besonders bei erfolgreichen Gesprächen beobachtet werden konnte. Dass diese Akkommodation stärker bei trainierten Sprechern ausgelöst wird, deckt sich mit den meist anekdotischen Empfehlungen von erfahrenen Handelsvertretern, die bisher nie wissenschaftlich nachgewiesen worden sind. Basierend auf diesen Ergebnissen beschäfti

    Chinese and Australian conversational styles: A comparative sociolinguistic study of overlap and listener response

    Get PDF
    This study compares the use of overlap and listener response by Chinese and Australian speakers in their respective intracultural conversations, that is, in conversations between Chinese interlocutors in Mandarin Chinese and between Australians in Australian English. The main purpose of this study is to locate similarities and differences between these two groups of speakers in their use of the two conversational strategies. Another major theme of the thesis is to examine the role of gender in the use of overlap and listener response in conversations of the two languages. The study is based upon the theoretical premise of interactional sociolinguistics that different cultural groups may have different rules for participation and interpretation of conversation and that conflicts related to these rules are a major source of cross cultural (and cross gender) miscommunication. It is also a response to lack of evidence for this claim from languages other than English, especially from Chinese. The data for the study are from 30 dyadic conversations between friends of similar age and similar social status: 15 Chinese conversations in Mandarin Chinese and 15 Australian ones in Australian English. Both the Australian and the Chinese conversations come from 5 female-female dyads, 5 male-male dyads and 5 male-female dyads. Both the qualitative and the quantitative aspects of the use of overlap and listener response are compared. With respect to the use of overlap, the qualitative part of the study examines the various phenomena that the speakers orient to in overlap onset, the procedures they use to resolve the state of overlap, and the strategies they employ to retrieve their overlapped utterances. The quantitative part of the study then compares the use of overlap by Chinese and Australian speakers and their respective male and female participants in terms of overlap onset, resolution, and/or retrieval . In regard to the use of listener response, the qualitative part of the study looks at how passive recipiency and speakership incipiency are signalled and achieved through the use of different listener response tokens in conversations of the two languages. The quantitative part of the study compares the use of listener response by Chinese and Australian speakers and male and female participants in three aspects: the overall frequency of listener responses used, the types of listener responses favoured, and the placements of listener responses with reference to a possible completion point. The results of the comparison reveal a number of similarities and differences in the use of overlap and listener response by Chinese and Australian speakers. For the use of overlap, the similarities include: 1) Both Chinese and Australian speakers have the same set of issues to orient to in their initiation of overlap, resort to the same basic procedures in resolving the state of overlap, and use the same strategies in retrieving their overlapped utterances; 2) they use a similar number of overlaps; 3) they start their overlaps mostly at a possible completion point; 4) they tend to continue with their talk more than to drop out when an overlap occurs. Two specific differences have also been identified in the use of overlap by Chinese and Australian speakers: 1) Australians initiate a higher percentage of their overlaps at a possible completion point whereas Chinese initiate a greater proportion of their overlaps in the midst of a turn; 2) when overlap occurs, Chinese speakers drop out more to resolve the state of overlap while Australian speakers continue their talk more to get through the overlap. For the use of listener response, the similarities lie largely in the ways of orienting to an extended turn unit by Chinese and Australian recipients in a conversation. Available in conversations of both languages are the two distinctive uses of listener response, that is, to show passive recipiency or to signal speakership incipiency. The differences between the two groups of speakers in the use of listener response include: 1) Australians use more listener responses than Chinese speakers; 2) while Australians prefer to use linguistic lexical expressions such as \u27yeh\u27 and \u27right\u27 as their reaction to the primary speaker\u27s ongoing talk, Chinese speakers favour the use of paralinguistic vocalic forms such as \u27hm\u27 and \u27ah\u27; 3) whereas Australians place a higher percentage of their listener responses at a possible completion point than Chinese speakers, Chinese speakers place a larger proportion of their listener responses in the midst of a turn than their Australian counterparts. While the similarities between Chinese and Australian speakers in their use of overlap and listener response indicate to a great extent the sharing of similar organising principles for conversation by both languages, the differences show some culture-specific aspects of the use of these two conversational strategies by the two groups of speakers. The study found a striking parallel between the differential use of overlap and listener response by Chinese and Australian speakers and their different perceptions of rights and obligations in social life, including in social interaction. The study does not reveal consistent cross-cultural patterns with respect to the use of overlap and listener response by male and female speakers in Chinese and Australian conversations. That is, gender has not played an identical role in the use of the two conversational strategies in conversations of, the two languages. Gender differential interactional patterns are to a great extent culture-specific. This finding, together with that of within-culture and within-gender variation, cautions us against any universal claim about gender-differential use of a given conversational phenomenon, whether the claims are based on deficit, or dominance, or difference assumptions in language and gender theories

    Gesture and Speech in Interaction - 4th edition (GESPIN 4)

    Get PDF
    International audienceThe fourth edition of Gesture and Speech in Interaction (GESPIN) was held in Nantes, France. With more than 40 papers, these proceedings show just what a flourishing field of enquiry gesture studies continues to be. The keynote speeches of the conference addressed three different aspects of multimodal interaction:gesture and grammar, gesture acquisition, and gesture and social interaction. In a talk entitled Qualitiesof event construal in speech and gesture: Aspect and tense, Alan Cienki presented an ongoing researchproject on narratives in French, German and Russian, a project that focuses especially on the verbal andgestural expression of grammatical tense and aspect in narratives in the three languages. Jean-MarcColletta's talk, entitled Gesture and Language Development: towards a unified theoretical framework,described the joint acquisition and development of speech and early conventional and representationalgestures. In Grammar, deixis, and multimodality between code-manifestation and code-integration or whyKendon's Continuum should be transformed into a gestural circle, Ellen Fricke proposed a revisitedgrammar of noun phrases that integrates gestures as part of the semiotic and typological codes of individuallanguages. From a pragmatic and cognitive perspective, Judith Holler explored the use ofgaze and hand gestures as means of organizing turns at talk as well as establishing common ground in apresentation entitled On the pragmatics of multi-modal face-to-face communication: Gesture, speech andgaze in the coordination of mental states and social interaction.Among the talks and posters presented at the conference, the vast majority of topics related, quitenaturally, to gesture and speech in interaction - understood both in terms of mapping of units in differentsemiotic modes and of the use of gesture and speech in social interaction. Several presentations explored the effects of impairments(such as diseases or the natural ageing process) on gesture and speech. The communicative relevance ofgesture and speech and audience-design in natural interactions, as well as in more controlled settings liketelevision debates and reports, was another topic addressed during the conference. Some participantsalso presented research on first and second language learning, while others discussed the relationshipbetween gesture and intonation. While most participants presented research on gesture and speech froman observer's perspective, be it in semiotics or pragmatics, some nevertheless focused on another importantaspect: the cognitive processes involved in language production and perception. Last but not least,participants also presented talks and posters on the computational analysis of gestures, whether involvingexternal devices (e.g. mocap, kinect) or concerning the use of specially-designed computer software forthe post-treatment of gestural data. Importantly, new links were made between semiotics and mocap data

    Turn-Taking in Human Communicative Interaction

    Get PDF
    The core use of language is in face-to-face conversation. This is characterized by rapid turn-taking. This turn-taking poses a number central puzzles for the psychology of language. Consider, for example, that in large corpora the gap between turns is on the order of 100 to 300 ms, but the latencies involved in language production require minimally between 600ms (for a single word) or 1500 ms (for as simple sentence). This implies that participants in conversation are predicting the ends of the incoming turn and preparing in advance. But how is this done? What aspects of this prediction are done when? What happens when the prediction is wrong? What stops participants coming in too early? If the system is running on prediction, why is there consistently a mode of 100 to 300 ms in response time? The timing puzzle raises further puzzles: it seems that comprehension must run parallel with the preparation for production, but it has been presumed that there are strict cognitive limitations on more than one central process running at a time. How is this bottleneck overcome? Far from being 'easy' as some psychologists have suggested, conversation may be one of the most demanding cognitive tasks in our everyday lives. Further questions naturally arise: how do children learn to master this demanding task, and what is the developmental trajectory in this domain? Research shows that aspects of turn-taking such as its timing are remarkably stable across languages and cultures, but the word order of languages varies enormously. How then does prediction of the incoming turn work when the verb (often the informational nugget in a clause) is at the end? Conversely, how can production work fast enough in languages that have the verb at the beginning, thereby requiring early planning of the whole clause? What happens when one changes modality, as in sign languages -- with the loss of channel constraints is turn-taking much freer? And what about face-to-face communication amongst hearing individuals -- do gestures, gaze, and other body behaviors facilitate turn-taking? One can also ask the phylogenetic question: how did such a system evolve? There seem to be parallels (analogies) in duetting bird species, and in a variety of monkey species, but there is little evidence of anything like this among the great apes. All this constitutes a neglected set of problems at the heart of the psychology of language and of the language sciences. This research topic welcomes contributions from right across the board, for example from psycholinguists, developmental psychologists, students of dialogue and conversation analysis, linguists interested in the use of language, phoneticians, corpus analysts and comparative ethologists or psychologists. We welcome contributions of all sorts, for example original research papers, opinion pieces, and reviews of work in subfields that may not be fully understood in other subfields

    Turn-Taking in Human Communicative Interaction

    Get PDF
    corecore