5,206 research outputs found

    Two-stage optimization method for efficient power converter design including light load operation

    Get PDF
    Power converter efficiency is always a hot topic for switch mode power supplies. Nowadays, high efficiency is required over a wide load range, e.g., 20%, 50% and 100% load. Computer-aided design optimization is developed in this research work, to optimize off-line power converter efficiency from light load to full load. A two-stage optimization method to optimize power converter efficiency from light load to full load is proposed. The optimization procedure first breaks the converter design variables into many switching frequency loops. In each fixed switching frequency loop, the optimal designs for 20%, 50% and 100% load are derived separately in the first stage, and an objective function using the optimization results in the first stage is formed in the second stage to consider optimizing efficiency at 20%, 50% and 100% load. Component efficiency models are also established to serve as the objective functions of optimizations. Prototypes 400V to 12V/25A 300W two-FET forward converters are built to verify the optimization results

    Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators

    Get PDF
    Thermoelectric generators (TEGs) convert heat energy into electricity in a quantity dependant on the temperature difference across them and the electrical load applied. It is critical to track the optimum electrical operating point through the use of power electronic converters controlled by a Maximum Power Point Tracking (MPPT) algorithm. The MPPT method based on the opencircuit voltage is arguably the most suitable for the linear electrical characteristic of TEGs. This paper presents an innovative way to perform the open-circuit voltage measure during the pseudo-normal operation of the interfacing power electronic converter. The proposed MPPT technique is supported by theoretical analysis and used to control a synchronous buck-boost converter. The prototype MPPT converter is controlled by an inexpensive microcontroller, and a lead-acid battery is used to accumulate the harvested energy. Experimental results using commercial TEG devices prove that the converter accurately tracks the maximum power point during thermal transients. Precise measurements in steady state show that the converter finds the maximum power point with a tracking efficiency of 99.85%

    Synthesis of input-rectifierless AC/DC converters

    Get PDF
    This paper discusses the basic construction procedure and topological possibilities of creating ac/dc converters out of simple dc/dc converters. It is shown that two separately controlled dc/dc converters are sufficient for producing a regulated dc output and shaping the input current, from an ac voltage source, without the need for input rectifiers. Some design constraints are discussed, emanating from the limitation of the conversion ratios that can be achieved by particular dc/dc converters. Selected topologies are verified experimentally. This kind of rectifierless converters find applications in airborne power supplies where zero-crossing distortions are significant because of the inevitable phase-lead effect of the input rectifier bridge.published_or_final_versio

    A PFC voltage regulator with low input current distortion derived from a rectifierless topology

    Get PDF
    Author name used in this publication: Chi K. Tse2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Control And Topology Improvements In Half-bridge Dc-dc Converters

    Get PDF
    Efficiency and transient response are two key requirements for DC-DC converters. Topology and control are two key topics in this dissertation. A variety of techniques for DC-DC converter performance improvement are presented in this work. Focusing on the efficiency issue, a variety of clamping techniques including both active and passive methods are presented after the ringing issues in DC-DC converters are investigated. By presenting the clamping techniques, a big variety of energy management concepts are introduced. The active bridge-capacitor tank clamping and FET-diode-capacitor tank clamping are close ideas, which transfer the leakage inductor energy to clamping capacitor to prevent oscillation between leakage inductor and junction capacitor of MOSFETs. The two-FET-clamping tank employs two MOSFETs to freewheeling the leakage current when the main MOSFETs of the half-bridge are both off. Driving voltage variation on the secondary side Synchronous Rectifier (SR) MOSFETs in self-driven circuit due to input voltage variation in bus converter applications is also investigated. One solution with a variety of derivations is proposed using zerner-capacitor combination to clamping the voltage while maintaining reasonable power losses. Another efficiency improvement idea comes from phase-shift concept in DC-DC converters. By employing phase-shift scheme, the primary side and the secondary side two MOSFETs have complementary driving signals respectively, which allow the MOSFET to be turned on with Zero Voltage Switching (ZVS). Simulation verified the feasibility of the proposed phase-shifted DC-DC converter. From the control scheme point of view, a novel peak current mode control concept for half-bridge topologies is presented. Aiming at compensating the imbalanced voltage due to peak current mode control in symmetric half-bridge topologies, an additional voltage compensation loop is used to bring the half-bridge capacitor voltage back to balance. In the proposed solutions, one scheme is applied on symmetric half-bridge topology and the other one is applied on Duty-cycle-shifted (DCS) half-bridge topology. Both schemes employ simple circuitry and are suitable for integration. Loop stability issues are also investigated in this work. Modeling work shows the uncompensated half-bridge topology cannot be stabilized under all conditions and the additional compensation loop helps to prevent the voltage imbalance effectively
    corecore