340 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    OPTIMAL PULSE WIDTH MODULATION OF MULTILEVEL INVERTERS FOR MEDIUM VOLTAGE DRIVES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Direct control strategy for a four-level three-phase flying-capacitor inverter

    Get PDF
    A direct predictive control strategy is proposed for a three-phase four-level flying-capacitor (FC) inverter in this paper. The balancing of the FC voltages, a challenge in applications with small capacitors and low switching frequencies, is done without any modulation, simply using tables calculated offline. These allow the realization of fast-dynamics output currents with reduced dv/dt in the output voltages and reduced switching frequencies. Moreover, no interharmonics are created when operating at low switching frequencies and with reference currents containing multiple harmonic components, which is a key feature for active power filters. Simulations and experimental results are presented to demonstrate the excellent performance of the direct control strategy in comparison with a conventional pulsewidth-modulation control technique, mostly for operation at low switching frequencies

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts

    Multi-Level Voltage-Source Duty-cycle Modulation: Analysis and Implementation

    Get PDF
    Multi-level converters have become increasingly popular due to high power quality, high-voltage capability, low switching losses, and low EMC concerns. Considering these advantages, the multi-level converter is a suitable candidate for implementation of future naval ship propulsion systems. This paper focuses on modulation techniques for the multi-level converter. In particular, a novel voltage-source method of multi-level modulation is introduced and compared to existing methods. The proposed method is discrete in nature and can therefore be readily implemented on a digital signal processor (DSP). The method is also readily extendable to any number of voltage levels. Results of experimental implementation are demonstrated using a four-level rectifier/inverter system, which incorporates diode-clamped multi-level converters and an eleven-level cascaded multi-level H-bridge inverter

    Direct control of D-STATCOM based on 23-level cascaded multilevel inverter using harmonics elimination pulse width modulation

    Get PDF
    The distribution static synchronous compensator (D-STATCOM) is primarily used for solving power quality problems. Normally, the phase-shifted pulse width modulation (PS-PWM) switching is employed in conjunction with the direct control of the D-STATCOM. However, the PS-PWM exhibits high switching losses. To alleviate this problem, a direct control scheme for D-STATCOM based on the harmonic elimination PWM (HEPWM) switching is developed. Due to the difficulty in solving the equations for the HEPWM angles, no work is reported on the direct control for a multilevel voltage source inverter (MVSI) D-STATCOM with more than 15-levels. Thus, the main contribution of the work is the application of HEPWM for 23-level cascaded MVSI using a wide modulation index (MI) range (i.e. 5.40 – 8.15 p.u). The main motivation to utilize the high number of level is to allow for the output voltage of the D-STATCOM to be sufficiently high, thus avoiding the use of step-up transformer. Furthermore, the achieved MI keeps the total harmonic distortion of the MVSI output voltage below the IEEE 519 Standard (5%) over the entire operating range. The eleven HEPWM switching angles were computed using an optimization technique, known as the differential evolution. Since the angles were computed offline, they were retrieved from a look-up table whenever the output voltage of the MVSI was to be constructed. The HEPWM-based direct control was benchmarked against the popular PS-PWM using ± 6.5MVAr/11kV D-STATCOM modelled in MATLAB-Simulink and PLECS software. For the same switching frequency, the proposed HEPWM switching exhibited superior harmonic spectra, hence had lower losses. Furthermore, the size of the series coupling inductor can be reduced to at least half. Dynamically, the steady state value of the reactive current was reached in less than one mains cycle when a transition from the full inductive to full capacitive modes was imposed. In addition, the proposed D-STATCOM controller mitigated the swell and sag problems in less than one cycle

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Optimal PWM for Three-Level Inverter fed High Speed Drives

    Get PDF
    Thanks to new field of applications, like high speed/high-pole drives with high rated fundamental frequency or multilevel converters powering medium or high voltage drive systems, optimized PWM techniques became again a hot topic of research interest. The current paper introduces an optimized PWM technique for three-level inverter, which can be applied to supply high speed drives at low pulse ratio. The optimization is done for the lowest loss-factor, which is proportional to the square of rms value of current harmonics. The performance of the optimal PWM technique is demonstrated by simulation and experimental tests by using a NPC type inverter

    A predictive control with flying capacitor balancing of a multicell active power filter

    Get PDF
    Unlike traditional inverters, multicell inverters have the following advantages: lower switching frequency, high number of output levels, and less voltage constraints on the insulated-gate bipolar transistors. Significant performances are provided with this structure which is constituted with flying capacitors. This paper deals with a predictive and direct control applied to the multicell inverter for an original application of this converter: a three-phase active filter. To take advantage of the capabilities of the multicell converter in terms of redundant control states, a voltage control method of flying capacitor is added, based on the use of a switching table. Flying capacitor voltages are kept on a fixed interval, and precise voltage sensors are not necessary. The association of predictive control and voltage balancing increases considerably the bandwidth of the active filter

    High Performance Multicell Series Inverter-Fed Induction Motor Drive

    Get PDF
    This document is the Accepted Manuscript version of the following article: M. Khodja, D. Rahiel, M. B. Benabdallah, H. Merabet Boulouiha, A. Allali, A. Chaker, and M. Denai, ‘High-performance multicell series inverter-fed induction motor drive’, Electrical Engineering, Vol. 99 (3): 1121-1137, September 2017. The final publication is available at Springer via DOI: https://doi.org/10.1007/s00202-016-0472-4.The multilevel voltage-source inverter (VSI) topology of the series multicell converter developed in recent years has led to improved converter performance in terms of power density and efficiency. This converter reduces the voltage constraints between all cells, which results in a lower transmission losses, high switching frequencies and the improvement of the output voltage waveforms. This paper proposes an improved topology of the series multicell inverter which minimizes harmonics, reduces torque ripples and losses in a variable-speed induction motor drive. The flying capacitor multilevel inverter topology based on the classical and modified phase shift pulse width modulation (PSPWM, MPSPWM) techniques are applied in this paper to minimize harmonic distortion at the inverter output. Simulation results are presented for a 2-kW induction motor drive and the results obtained demonstrate reduced harmonics, improved transient responses and reference tracking performance of the voltage in the induction motor and consequently reduced torque ripplesPeer reviewe
    corecore