387 research outputs found

    Modeling and Experimental Verification of Adaptive 100% Stator Ground Fault Protection Schemes for Synchronous Generators

    Get PDF
    Salient pole synchronous generators as the main component of an electricity generation station should be carefully maintained and their operation has to be monitored such that any damage on them is avoided. Otherwise, the generating station might experience frequent shut downs which results in electricity generation interruptions and high costs associated with repairing and compensation of lack of energy. In this sense, many protective schemes focusing on a variety of synchronous generator faults have already been proposed and are still modified and developed to further enhance the quality of protection. In this thesis, synchronous generator stator windings to ground fault is studied as one of the most common and crucial faults in these machines. Numerous methods of stator winding to ground fault protection schemes are also reported in the literature. Third harmonic differential voltage and sub-harmonic schemes are studied in this research. A novel adaptive scheme for both methods is modelled and implemented in a comprehensive lab scale set-up where a real generation unit is scaled down including all different components and apparatus. The simulation model is also established based on simultaneous finite element analysis (FEA) and coupled magnetic circuit to assist with system configuration design and parameter selections. The adaptive scheme is proved to be capable of detecting stator windings to ground faults based on actual experimental data. Finally, the proposed adaptive scheme is compared against other available non-adaptive protection schemes currently used in industrial relays. Several important performance evaluation criteria in protection schemes such as sensitivity and security of operation referred to as reliability are considered. It is shown that the adaptive scheme offers higher reliability than other schemes which emphasizes its credibility and applicability

    Electromagnetic Analysis of Stator Ground Faults in Synchronous Generators

    Get PDF
    There are many stator ground faults protection schemes available in the industry. These schemes relatively perform well in detecting the faults in the stator winding. The protection of the neutral point vicinity is the challenge because of the low voltage induced in that area. The 100% stator protection concept has been around for a long time. However, these schemes sometimes have limitations. The fact that stator ground fault detection in generators depends on many factors like the generator design, the generator loading, and the equivalent capacitance of the generator’s windings and the apparatus connected to it, occasionally caused these schemes to fail to detect the winding faults near the neutral or to miss-operate during normal system disturbance. In this dissertation, an electromagnetic analysis of the synchronous generators stator winding ground faults is presented. A mathematical model for the synchronous generator under stator winding fault is being derived. In addition, a study is conducted using 2D FEA simulation and verified using experimental testing on the third harmonic ratio under-voltage protection scheme. Another study focuses on finding a unique signature for the stator ground fault using wavelet transform. This analysis is an attempt to understand this phenomenon from the machine design point of view by looking at the generator terminal and neutral voltages. The analysis presented in this dissertation shows that the protection schemes perform positively in detecting stator ground fault. However, it does not show reliable performance under system disturbances. On the other hand, the wavelet method shows better performance and it reflects robustness against these disturbances

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained

    Real-Time Detection of Incipient Inter-Turn Short Circuit and Sensor Faults in Permanent Magnet Synchronous Motor Drives Based on Generalized Likelihood Ratio Test and Structural Analysis

    Get PDF
    This paper presents a robust model-based technique to detect multiple faults in permanent magnet synchronous motors (PMSMs), namely inter-turn short circuit (ITSC) and encoder faults. The proposed model is based on a structural analysis, which uses the dynamic mathematical model of a PMSM in an abc frame to evaluate the system’s structural model in matrix form. The just-determined and over-determined parts of the system are separated by a Dulmage–Mendelsohn decomposition tool. Subsequently, the analytical redundant relations obtained using the over-determined part of the system are used to form smaller redundant testable sub-models based on the number of defined fault terms. Furthermore, four structured residuals are designed based on the acquired redundant sub-models to detect measurement faults in the encoder and ITSC faults, which are applied in different levels of each phase winding. The effectiveness of the proposed detection method is validated by an in-house test setup of an inverter-fed PMSM, where ITSC and encoder faults are applied to the system in different time intervals using controllable relays. Finally, a statistical detector, namely a generalized likelihood ratio test algorithm, is implemented in the decision-making diagnostic system resulting in the ability to detect ITSC faults as small as one single short-circuited turn out of 102, i.e., when less than 1% of the PMSM phase winding is short-circuited.publishedVersio

    Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] For the last ten years, at least three different special sections dealing with diagnostics in power electrical engineering have been published in the IEEE transactions on industrial electronics [1]-[5]. All of them had their specificities, but the last ones, starting in 2011, were more connected to relevant events organized on the topic. In fact, these events have been clearly the only international forums fully dedicated to diagnostics techniques in power electrical engineering. For this particular issue, it has been decided to separate the different submissions into six parts: state of the art; general methods; induction machines (IMs); synchronous machines (SMs); . electrical drives; power components and power converters. The second section includes only one state-of-the-art paper, which is dedicated to actual techniques implemented in both industry and research laboratories. The third section includes three papers on diagnostic techniques not specifically aimed at a particular type of machine. The fourth section includes three papers devoted to diagnostics of rotor faults, two dedicated to stator insulation issues, and four papers dealing with mechanical faults diagnosis in IMs. The fifth section includes papers focusing on different types of SMs. The first two papers deal with wound-rotor SMs, the following three papers are dedicated to permanent-magnet radial flux machines, and the last one deals with permanent-magnet axial flux machines. Regarding the types of faults analyzed, there are three papers devoted to the diagnosis of interturn short circuits in the stator windings, i.e., one dedicated to the detection and location of field-winding-to-ground faults and a paper devoted to the diagnosis of static eccentricities. In the sixth section, two papers investigate issues related to faults in drive sensors, and one is devoted to fault detections in the coupling inductors. The last section includes two papers devoted to diagnosis of faults and losses analysis in switching components of power converters.Capolino, G.; Antonino-Daviu, J.; Riera-Guasp, M. (2015). Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives. IEEE Transactions on Industrial Electronics. 62(3):1738-1745. doi:10.1109/TIE.2015.2391186S1738174562

    Studies in Electrical Machines & Wind Turbines associated with developing Reliable Power Generation

    Get PDF
    The publications listed in date order in this document are offered for the Degree of Doctor of Science in Durham University and have been selected from the author’s full publication list. The papers in this thesis constitute a continuum of original work in fundamental and applied electrical science, spanning 30 years, deployed on real industrial problems, making a significant contribution to conventional and renewable energy power generation. This is the basis of a claim of high distinction, constituting an original and substantial contribution to engineering science

    Sources of vibration and their treatment in hydro power stations-A review

    Get PDF
    AbstractVibration condition monitoring (VCM) enhances the performance of Hydro Generating Equipment (HGE) by minimizing the damage and break down chances, so that equipment stay available for a longer time. The execution of VCM and diagnosing the system of an HPS includes theoretical and experimental exploitation. Various studies have made their contribution to find out the vibration failure mechanism and incipient failures in HPS. This paper gives a review on VCM of electrical and mechanical equipment used in the HPS along with a brief explanation of vibration related faults considering past literature of around 30years. Causes of the vibrations on rotating and non-rotating equipment of HPS have been discussed along with the standards for vibration measurements. Future prospectus of VCM is also discussed

    Condition Monitoring System of Wind Turbine Generators

    Get PDF
    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators\u27 faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential failures during operation due to high generator temperatures. In addition, the use of some advanced statistical techniques, such as regression models, is proposed to perform a CMS on wind generators. Further, the mechanical and thermal characteristics are employed to diagnose the faults that can occur in wind generators. The rate of change in the generator temperature with respect to the induced electrical torque; for instance is considered as an indicator to the occurrence of faults in the generators. The behavior of the driving torque of the rotating permanent magnet with respect to the permanent magnet temperature can also utilize to indicate the operation condition. The permanent magnet model describes the rotating permanent magnet condition during operation in the normal and abnormal situations. In this context, a set of partial differential equations is devolved for the characterization of the rotations of the permanent. Finally, heat transfer analysis and fluid mechanics methods are employed to develop a suitable CMS on the wind generators by analyzing the operation conditions of the generator\u27s heat exchanger. The proposed methods applied based on real data of different wind turbines, and the obtained results were very convincing

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Stator winding fault diagnosis in synchronous generators for wind turbine applications

    Get PDF
    Wind turbine manufacturers have introduced to the market a variety of innovative concepts and configurations for generators to maximize energy capture, reduce costs and improve reliability of wind energy. For the purpose of improving reliability and availability, a number of diagnostic methods have been developed. Stator current signature analysis (SCSA) is potentially an effective technique to diagnose faults in electrical machines, and could be used to detect and diagnose faults in wind turbines. In this study, an investigation was conducted into the application of SCSA to detect stator inter-turn faults in an excited synchronous generator and a permanent magnet synchronous generator. It was found from simulation results that, owing to disruption of magnetic field symmetry and imbalance between the current flowing in the shorted turn and the corresponding diametrically opposite turn in the winding, certain harmonic components in the stator current clearly increased as the number of shorted turns increased. The findings are helpful to detect faults involving only a few turns without ambiguity, in spite of the difference in the configuration of the generators. As expected, because of the different type, configuration and operational condition of the two generators studied, detecting faults through the generator current signature requires a particular approach for each generator type
    • …
    corecore