48,943 research outputs found

    Avoiding diamonds in desynchronisation

    Get PDF
    The design of concurrent systems often assumes synchronous communication between different parts of a system. When system components are physically apart, this assumption becomes inappropriate. Desynchronisation is a technique that aims to implement a synchronous design in an asynchronous manner by placing buffers between the components of the synchronous design. When queues are used as buffers, the so-called ‘diamond property’ (among others) ensures correct operation of the desynchronised design. However, this property is difficult to establish in practice. In this paper, we give sufficient and necessary conditions under which a concrete synchronous design (i.e., without the unobservable action) is equivalent to an asynchronous design and formally prove that the diamond property is no longer needed for desynchronisation when half-duplex queues are used as a communication buffer. Furthermore, we discuss how the half-duplex condition can be further relaxed when the diamond property can be partially guaranteed. To illustrate how this theory may be applied, we desynchronise the synchronous systems that are synthesised using supervisory control theory

    Augmenting High-Level Petri Nets to Support GALS Distributed Embedded Systems Specification

    Get PDF
    Part 9: Embedded Systems and Petri NetsInternational audienceHigh-level Petri net classes are suited to specify concurrent processes with emphasis both in control and data processing, making them appropriate to specify distributed embedded systems (DES). Embedded systems components are usually synchronous, which means that DES can be seen as Globally-Asynchronous Locally-Synchronous (GALS) systems. This paper proposes to include in high-level Petri nets a set of concepts already introduced for low-level Petri nets allowing the specification of GALS systems, namely time domains, test arcs and priorities. Additionally, this paper proposes external messages and three types of (high-level) asynchronous communication channels, to specify the interaction between distributed components based on message exchange. With these extensions, GALS-DES can be specified using high-level Petri nets. The resulting models include the specification of each component with well-defined boundaries and interface, and also the explicit specification of the asynchronous interaction between components. These models will be used not only to specify the system behavior, but also to be the input for model-checking tools (supporting its verification) and automatic code generation tools (supporting its implementation in software and hardware platforms), giving a contribution to the model-based development approach and hardware-software co-design of DES based on high-level Petri nets

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Model-Based Adaptation of Software Communicating via FIFO Buffers

    Get PDF
    Software Adaptation is a non-intrusive solution for composing black-box components or services (peers) whose individual functionality is as required for the new system, but that present interface mismatch, which leads to deadlock or other undesirable behaviour when combined. Adaptation techniques aim at automatically generating new components called adapters. All the interactions among peers pass through the adapter, which acts as an orchestrator and makes the involved peers work correctly together by compensating for mismatch. Most of the existing solutions in this field assume that peers interact synchronously using rendezvous communication. However, many application areas rely on asynchronous communication models where peers interact exchanging messages via buffers. Generating adapters in this context becomes a difficult problem because peers may exhibit cyclic behaviour, and their composition often results in infinite systems. In this paper, we present a method for automatically generating adapters in asynchronous environments where peers interact using FIFO buffers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore