103 research outputs found

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    On Synchronizing Colorings and the Eigenvectors of Digraphs

    Get PDF
    An automaton is synchronizing if there exists a word that sends all states of the automaton to a single state. A coloring of a digraph with a fixed out-degree k is a distribution of k labels over the edges resulting in a deterministic finite automaton. The famous road coloring theorem states that every primitive digraph has a synchronizing coloring. We study recent conjectures claiming that the number of synchronizing colorings is large in the worst and average cases. Our approach is based on the spectral properties of the adjacency matrix A(G) of a digraph G. Namely, we study the relation between the number of synchronizing colorings of G and the structure of the dominant eigenvector v of A(G). We show that a vector v has no partition of coordinates into blocks of equal sum if and only if all colorings of the digraphs associated with v are synchronizing. Furthermore, if for each b there exists at most one partition of the coordinates of v into blocks summing up to b, and the total number of partitions is equal to s, then the fraction of synchronizing colorings among all colorings of G is at least (k-s)/k. We also give a combinatorial interpretation of some known results concerning an upper bound on the minimal length of synchronizing words in terms of v

    Slowly synchronizing automata and digraphs

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. These automata are closely related to primitive digraphs with large exponent.Comment: 13 pages, 5 figure

    The averaging trick and the Cerny conjecture

    Full text link
    The results of several papers concerning the \v{C}ern\'y conjecture are deduced as consequences of a simple idea that I call the averaging trick. This idea is implicitly used in the literature, but no attempt was made to formalize the proof scheme axiomatically. Instead, authors axiomatized classes of automata to which it applies

    Lower bounds for the length of reset words in eulerian automata

    Full text link
    For each odd n ≥ 5 we present a synchronizing Eulerian automaton with n states for which the minimum length of reset words is equal to n 2-3n+4/2. We also discuss various connections between the reset threshold of a synchronizing automaton and a sequence of reachability properties in its underlying graph. © 2013 World Scientific Publishing Company

    Primitive digraphs with large exponents and slowly synchronizing automata

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. All these automata are tightly related to primitive digraphs with large exponent.Comment: 23 pages, 11 figures, 3 tables. This is a translation (with a slightly updated bibliography) of the authors' paper published in Russian in: Zapiski Nauchnyh Seminarov POMI [Kombinatorika i Teorija Grafov. IV], Vol. 402, 9-39 (2012), see ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v402/p009.pdf Version 2: a few typos are correcte

    On the interplay between Babai and Cerny's conjectures

    Full text link
    Motivated by the Babai conjecture and the Cerny conjecture, we study the reset thresholds of automata with the transition monoid equal to the full monoid of transformations of the state set. For automata with nn states in this class, we prove that the reset thresholds are upper-bounded by 2n26n+52n^2-6n+5 and can attain the value n(n1)2\tfrac{n(n-1)}{2}. In addition, we study diameters of the pair digraphs of permutation automata and construct nn-state permutation automata with diameter n24+o(n2)\tfrac{n^2}{4} + o(n^2).Comment: 21 pages version with full proof

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain upper bounds for the reset thresholds of automata with a short word of a small rank. The results are applied to make several improvements in the area. We improve the best general upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an nn-state synchronizing decoder has a reset word of length at most O(nlog3n)O(n \log^3 n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary nn-state decoder is at most O(nlogn)O(n \log n). We also show that for any non-unary alphabet there exist decoders whose reset threshold is in Θ(n)\varTheta(n). We prove the \v{C}ern\'{y} conjecture for nn-state automata with a letter of rank at most 6n63\sqrt[3]{6n-6}. In another corollary, based on the recent results of Nicaud, we show that the probability that the \v{C}ern\'y conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and also that the expected value of the reset threshold of an nn-state random synchronizing binary automaton is at most n3/2+o(1)n^{3/2+o(1)}. Moreover, reset words of lengths within all of our bounds are computable in polynomial time. We present suitable algorithms for this task for various classes of automata, such as (quasi-)one-cluster and (quasi-)Eulerian automata, for which our results can be applied.Comment: 18 pages, 2 figure
    corecore