9 research outputs found

    Decoupling Information and Connectivity via Information-Centric Transport

    Get PDF
    The power of Information-Centric Networking architectures (ICNs) lies in their abstraction for communication --- the request for named data. This abstraction was popularized by the HyperText Transfer Protocol (HTTP) as an application-layer abstraction, and was extended by ICNs to also serve as their network-layer abstraction. In recent years, network mechanisms for ICNs, such as scalable name-based forwarding, named-data routing and in-network caching, have been widely explored and researched. However, to the best of our knowledge, the impact of this network abstraction on ICN applications has not been explored or well understood. The motivation of this dissertation is to address this research gap. Presumably, shifting from the IP\u27s channel abstraction, in which two endpoints must establish a channel to communicate, to the request for named data abstraction in ICNs, should simplify application mechanisms. This is not only because those mechanisms are no longer required to translate named-based requests to addresses of endpoints, but mainly because application mechanisms are no longer coupled with the connectivity characteristics of the channel. Hence, applications do not need to worry if there is a synchronous end-to-end path between two endpoints, or if a device along the path switches between concurrent interfaces for communication. Therefore, ICN architectures present a new and powerful promise to applications --- the freedom to stay in the information plane decoupled from connectivity. This dissertation shows that despite this powerful promise, the information and connectivity planes are presently coupled in today\u27s incarnations of leading ICNs by a core architectural component, the forwarding strategy. Therefore, this dissertation defines the role of forwarding strategies, and it introduces Information-Centric Transport (ICT) as a new architectural component that application developers can rely on if they want their application to be decoupled from connectivity. When discussing the role of ICT, we explain the importance of in-network transport mechanisms in ICNs, and we explore how those mechanisms can be scalable when generalized to provide broadly-applicable application needs. To illustrate our contribution concretely, we present three group communication abstractions that can evolve into ICTs: 1) Data synchronization of named data. This abstraction supports applications that want to maintain data consistency over time of a group\u27s shared dataset. 2) Push-like notifications for the latest named data. This abstraction supports applications that want to quickly notify and be notified about the latest content that was produced by a member(s) in the group. And 3) distributed named data fetching when the content is partitioned. This abstraction supports applications that their named data is partitioned and distributed in the group, and the names of content items in a partition cannot be generalized and hierarchically represented using one partition name. For each ICT, we provide examples of known applications that can use it, we discuss different mechanisms for implementation, and we evaluate selected implementations. We show how by relying on an ICT instead of a forwarding strategy, the tested applications can maintain sustainable communication in connectivities where IP tools fail or do not work well

    Decoupling Information and Connectivity via Information-Centric Transport

    Get PDF
    The power of Information-Centric Networking (ICN) architectures lies in their abstraction for communication --- the request for named data. This abstraction promises that applications can choose to operate only in the information plane, agnostic to the mechanisms implemented in the connectivity plane. However, despite this powerful promise, the information and connectivity planes are presently coupled in today\u27s incarnations of leading ICNs by a core architectural component, the forwarding strategy. Presently, this component is not sustainable: it implements both the information and connectivity mechanisms without specifying who should choose a forwarding strategy --- an application developer or the network operator. In practice, application developers can specify a strategy only if they understand connectivity details, while network operators can assign strategies only if they understand application expectations. In this paper, we define the role of forwarding strategies, and we introduce Information-Centric Transport (ICT) as an abstraction for cleanly decoupling the information plane from the connectivity plane. We discuss how ICTs allow applications to operate in the information plane, concerned only with namespaces and trust identities, leaving network node operators free to deploy whatever strategy mechanisms make sense for the connectivity that they manage. To illustrate the ICT concept, we demonstrate ICT-Sync and ICT-Notify. We show how these ICTs 1) enable applications to operate regardless of connectivity details, 2) are designed to satisfy a predefined set of application requirements and are free from application-specifics, and 3) can be deployed by network operators where needed, without requiring any change to the application logic

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    Access Control Mechanisms in Named Data Networks:A Comprehensive Survey

    Get PDF
    Information-Centric Networking (ICN) has recently emerged as a prominent candidate for the Future Internet Architecture (FIA) that addresses existing issues with the host-centric communication model of the current TCP/IP-based Internet. Named Data Networking (NDN) is one of the most recent and active ICN architectures that provides a clean slate approach for Internet communication. NDN provides intrinsic content security where security is directly provided to the content instead of communication channel. Among other security aspects, Access Control (AC) rules specify the privileges for the entities that can access the content. In TCP/IP-based AC systems, due to the client-server communication model, the servers control which client can access a particular content. In contrast, ICN-based networks use content names to drive communication and decouple the content from its original location. This phenomenon leads to the loss of control over the content causing different challenges for the realization of efficient AC mechanisms. To date, considerable efforts have been made to develop various AC mechanisms in NDN. In this paper, we provide a detailed and comprehensive survey of the AC mechanisms in NDN. We follow a holistic approach towards AC in NDN where we first summarize the ICN paradigm, describe the changes from channel-based security to content-based security and highlight different cryptographic algorithms and security protocols in NDN. We then classify the existing AC mechanisms into two main categories: Encryption-based AC and Encryption-independent AC. Each category has different classes based on the working principle of AC (e.g., Attribute-based AC, Name-based AC, Identity-based AC, etc). Finally, we present the lessons learned from the existing AC mechanisms and identify the challenges of NDN-based AC at large, highlighting future research directions for the community.Comment: This paper has been accepted for publication by the ACM Computing Surveys. The final version will be published by the AC

    Information-Centric Design and Implementation for Underwater Acoustic Networks

    Get PDF
    Over the past decade, Underwater Acoustic Networks (UANs) have received extensive attention due to their vast benefits in academia and industry alike. However, due to the overall magnitude and harsh characteristics of underwater environments, standard wireless network techniques will fail because current technology and energy restrictions limit underwater devices due to delayed acoustic communications. To help manage these limitations we utilize Information-Centric Networking (ICN). More importantly, we look at ICN\u27s paradigm shift from traditional TCP/IP architecture to improve data handling and enhance network efficiency. By utilizing some of ICN\u27s techniques, such as data naming hierarchy, we can reevaluate each component of the network\u27s protocol stack given current underwater limitations to study the vast solutions and perspectives Information-Centric architectures can provide to UANs. First, we propose a routing strategy used to manage and route large data files in a network prone to high mobility. Therefore, due to UANs limited transmitting capability, we passively store sensed data and adaptively find the best path. Furthermore, we introduce adapted Named Data Networking (NDN) components to improve upon routing robustness and adaptiveness. Beyond naming data, we use tracers to assist in tracking stored data locations without using other excess means such as flooding. By collaborating tracer consistency with routing path awareness our protocol can adaptively manage faulty or high mobility nodes. Through this incorporation of varied NDN techniques, we are able to see notable improvements in routing efficiency. Second, we analyze the effects of Denial of Service (DoS) attacks on upper layer protocols. Since UANs are typically resource restrained, malicious users can advantageously create fake traffic to burden the already constrained network. While ICN techniques only provide basic DoS restriction we must expand our detection and restriction technique to meet the unique demands of UANs. To provide enhanced security against DoS we construct an algorithm to detect and restrict against these types of attacks while adapting to meet acoustic characteristics. To better extend this work we incorporate three node behavior techniques using probabilistic, adaptive, and predictive approaches for detecting malicious traits. Thirdly, to depict and test protocols in UANs, simulators are commonly used due to their accessibility and controlled testing aspects. For this section, we review Aqua-Sim, a discrete event-driven open-source underwater simulator. To enhance the core aspect of this simulator we first rewrite the current architecture and transition Aqua-Sim to the newest core simulator, NS-3. Following this, we clean up redundant features spread out between the various underwater layers. Additionally, we fully integrate the diverse NS-3 API within our simulator. By revamping previous code layout we are able to improve architecture modularity and child class expandability. New features are also introduced including localization and synchronization support, busy terminal problem support, multi-channel support, transmission range uncertainty modules, external noise generators, channel trace-driven support, security module, and an adapted NDN module. Additionally, we provide extended documentation to assist in user development. Simulation testing shows improved memory management and continuous validity in comparison to other underwater simulators and past iterations of Aqua-Sim

    Acta Cybernetica : Volume 18. Number 4.

    Get PDF

    Introductory Computer Forensics

    Get PDF
    INTERPOL (International Police) built cybercrime programs to keep up with emerging cyber threats, and aims to coordinate and assist international operations for ?ghting crimes involving computers. Although signi?cant international efforts are being made in dealing with cybercrime and cyber-terrorism, ?nding effective, cooperative, and collaborative ways to deal with complicated cases that span multiple jurisdictions has proven dif?cult in practic
    corecore