299 research outputs found

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case

    Effect of wearout processes on the critical timing parameters and reliability of CMOS bistable circuits

    Get PDF
    The objective of the research presented in this thesis was to investigate the effects of wearout processes on the performance and reliability of CMOS bistable circuits. The main wearout process affecting reliability of submicron MOS devices was identified as hot-carrier stress (and the resulting degradation in circuit performance). The effect of hot-carrier degradation on the resolving time leading to metastability of the bistable circuits also have been investigated. Hot-carrier degradation was identified as a major reliability concern for CMOS bistable circuits designed using submicron technologies. The major hot-carrier effects are the impact ionisation of hot- carriers in the channel of a MOS device and the resulting substrate current and gate current generation. The substrate current has been used as the monitor for the hot-carrier stress and have developed a substrate current model based on existing models that have been extended to incorporate additional effects for submicron devices. The optimisation of the substrate current model led to the development of degradation and life-time models. These are presented in the thesis. A number of bistable circuits designed using 0.7 micron CMOS technology design rules were selected for the substrate current model analysis. The circuits were simulated using a set of optimised SPICE model parameters and the stress factors on each device was evaluated using the substrate current model implemented as a post processor to the SPICE simulation. Model parameters for each device in the bistable were degraded according to the stress experienced and simulated again to determine the degradation in characteristic timing parameters for a predetermined stress period. A comparative study of the effect of degradation on characteristic timing parameters for a number of latch circuits was carried out. The life-times of the bistables were determined using the life-time model. The bistable circuits were found to enter a metastable state under critical timing conditions. The effect of hot-carrier stress induced degradation on the metastable state operation of the bistables were analysed. Based on the analysis of the hot-carrier degradation effects on the latch circuits, techniques are suggested to reduce hot-carrier stress and to improve circuit life-time. Modifications for improving hot- carrier reliability were incorporated into all the bistable circuits which were re-simulated to determine the improvement in life-time and reliability of the circuits under hot-carrier stress. The improved circuits were degraded based on the new stress factors and the degradation effects on the critical timing parameters evaluated and these were compared with those before the modifications. The improvements in the life-time and the reliability of the selected bistable circuits were quantified. It has been demonstrated that the hot-carrier reliability for all the selected bistable circuits can be improved by design techniques to reduce the stress on identified critically stressed devices

    Parametric analysis of microwave and laser systems for communication and tracking. Volume 2 - System selection

    Get PDF
    System selection criteria of microwave and laser systems for communication and tracking - Vol.

    Design and implementation of a control system for use of galvanometric scanners in laser micromachining applications

    Get PDF
    In the recent years, laser machining technology has been used widely in industrial applications usually with the aim of increasing the production capability of mass production lines - especially for fast marking, engraving type of applications where speed is an important concern - or manufacturing quality of a certain facility by increasing the level of accuracy in material processing applications such as drilling, cutting; or any scientific research oriented work where high precision machining of parts in sub millimeter scale might be required. A galvanometric scanner is a high precision device that is able to steer a laser beam with a mirror attached to a motor, whose rotor angular range is usually limited with tens of degrees in both directions of rotation; and position is controlled either by voltage or current. Due to their lightness, the rotor and the mirror can move very fast, allowing fast marking (burning out) operation with the laser beam. This can be evaluated as a great advantage compared to slower mechanical appliances used for cutting/machining of different materials. This study concentrates on the analysis of galvanometric scanner system components; and the design and implementation of a hardware and software based control system for a dual-axis galvo setup; and their adaptation for use in laser micromachining applications either as a standalone system or a modular subsystem. Analysis part of the thesis work contains: evaluation of dominant laser micromachining techniques, an overview of the galvanometric scanner system based approach and related components (e.g. electromechanical, electrical, optical), understanding of working principles and related simulation work, compatibility issues with the target micromachining applications. Design part of the thesis work includes: the design and implementation of electronic controller board, intermediate drive electronics stage, microcontroller programming for machining control algorithm, interfacing with graphical user interface based control software and production of necessary mechanical parts. The study has been finalized with experimental work and evaluation of obtained results. The results of these studies are promising and motivate the use of laser galvanometric scanner systems in laser micromachining applications

    Voyager spacecraft system. Volume C - Design for operational support equipment Final technical report

    Get PDF
    Operational support equipment needed to support Voyager spacecraft missio

    Solutions and application areas of flip-flop metastability

    Get PDF
    PhD ThesisThe state space of every continuous multi-stable system is bound to contain one or more metastable regions where the net attraction to the stable states can be infinitely-small. Flip-flops are among these systems and can take an unbounded amount of time to decide which logic state to settle to once they become metastable. This problematic behavior is often prevented by placing the setup and hold time conditions on the flip-flop’s input. However, in applications such as clock domain crossing where these constraints cannot be placed flip-flops can become metastable and induce catastrophic failures. These events are fundamentally impossible to prevent but their probability can be significantly reduced by employing synchronizer circuits. The latter grant flip-flops longer decision time at the expense of introducing latency in processing the synchronized input. This thesis presents a collection of research work involving the phenomenon of flip-flop metastability in digital systems. The main contributions include three novel solutions for the problem of synchronization. Two of these solutions are speculative methods that rely on duplicate state machines to pre-compute data-dependent states ahead of the completion of synchronization. Speculation is a core theme of this thesis and is investigated in terms of its functional correctness, cost efficacy and fitness for being automated by electronic design automation tools. It is shown that speculation can outperform conventional synchronization solutions in practical terms and is a viable option for future technologies. The third solution attempts to address the problem of synchronization in the more-specific context of variable supply voltages. Finally, the thesis also identifies a novel application of metastability as a means of quantifying intra-chip physical parameters. A digital sensor is proposed based on the sensitivity of metastable flip-flops to changes in their environmental parameters and is shown to have better precision while being more compact than conventional digital sensors
    corecore