770 research outputs found

    An Inexpensive Liquid Crystal Spectropolarimeter for the Dominion Astrophysical Observatory Plaskett Telescope

    Full text link
    A new, inexpensive polarimetric unit has been constructed for the Dominion Astrophysical Observatory (DAO) 1.8-m Plaskett telescope. It is implemented as a plug-in module for the telescope's existing Cassegrain spectrograph, and enables medium resolution (R~10,000) circular spectropolarimetry of point sources. A dual-beam design together with fast switching of the wave plate at rates up to 100Hz, and synchronized with charge shuffling on the CCD, is used to significantly reduce instrumental effects and achieve high-precision spectropolarimetric measurements for a very low cost. The instrument is optimized to work in the wavelength range 4700 - 5300A to simultaneously detect polarization signals in the H beta line as well as nearby metallic lines. In this paper we describe the technical details of the instrument, our observing strategy and data reduction techniques, and present tests of its scientific performance.Comment: 32 pages, 15 figures. Accepted for publication in PAS

    Decomposing the dynamics of heterogeneous delayed networks with applications to connected vehicle systems

    Full text link
    Delay-coupled networks are investigated with nonidentical delay times and the effects of such heterogeneity on the emergent dynamics of complex systems are characterized. A simple decomposition method is presented that decouples the dynamics of the network into node-size modal equations in the vicinity of equilibria. The resulting independent components contain distributed delays that map the spatiotemporal complexity of the system to the time domain. We demonstrate that this new approach can be used to reveal new physical phenomena in heterogenous vehicular traffic when vehicles are linked via vehicle-to-vehicle (V2V) communication.Comment: The paper has been updated in response to referee comments. 5 pages, 2 figure

    Improved Acceleration of the GPU Fourier Domain Acceleration Search Algorithm

    Full text link
    We present an improvement of our implementation of the Correlation Technique for the Fourier Domain Acceleration Search (FDAS) algorithm on Graphics Processor Units (GPUs) (Dimoudi & Armour 2015; Dimoudi et al. 2017). Our new improved convolution code which uses our custom GPU FFT code is between 2.5 and 3.9 times faster the than our cuFFT-based implementation (on an NVIDIA P100) and allows for a wider range of filter sizes then our previous version. By using this new version of our convolution code in FDAS we have achieved 44% performance increase over our previous best implementation. It is also approximately 8 times faster than the existing PRESTO GPU implementation of FDAS (Luo 2013). This work is part of the AstroAccelerate project (Armour et al. 2002), a many-core accelerated time-domain signal processing library for radio astronomy.Comment: proceeding from ADASS XXVII conference, 4 page

    Small changes at single nodes can shift global network dynamics

    Full text link
    Understanding the sensitivity of a system's behavior with respect to parameter changes is essential for many applications. This sensitivity may be desired - for instance in the brain, where a large repertoire of different dynamics, particularly different synchronization patterns, is crucial - or may be undesired - for instance in power grids, where disruptions to synchronization may lead to blackouts. In this work, we show that the dynamics of networks of phase oscillators can acquire a very large and complex sensitivity to changes made in either their units' parameters or in their connections - even modifications made to a parameter of a single unit can radically alter the global dynamics of the network in an unpredictable manner. As a consequence, each modification leads to a different path to phase synchronization manifested as large fluctuations along that path. This dynamical malleability occurs over a wide parameter region, around the network's two transitions to phase synchronization. One transition is induced by increasing the coupling strength between the units, and another is induced by increasing the prevalence of long-range connections. Specifically, we study Kuramoto phase oscillators connected under either Watts-Strogatz or distance-dependent topologies to analyze the statistical properties of the fluctuations along the paths to phase synchrony. We argue that this increase in the dynamical malleability is a general phenomenon, as suggested by both previous studies and the theory of phase transitions.Comment: 14 pages, 8 figure

    Correlated Quantum Dynamics of a Single Atom Collisionally Coupled to an Ultracold Finite Bosonic Ensemble

    Full text link
    We explore the correlated quantum dynamics of a single atom, regarded as an open system, with a spatio-temporally localized coupling to a finite bosonic environment. The single atom, initially prepared in a coherent state of low energy, oscillates in a one-dimensional harmonic trap and thereby periodically penetrates an interacting ensemble of NAN_A bosons, held in a displaced trap. We show that the inter-species energy transfer accelerates with increasing NAN_A and becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom and stochastically favour certain energy transfer channels depending on the instantaneous direction of transfer. Concerning the subsystem states, the energy transfer is mediated by non-coherent states of the single atom and manifests itself in singlet and doublet excitations in the finite bosonic environment. These comprehensive insights into the non-equilibrium quantum dynamics of an open system are gained by ab-initio simulations of the total system with the recently developed Multi-Layer Multi-Configuration Time-Dependent Hartree Method for Bosons

    A geometric basis for the standard-model gauge group

    Full text link
    A geometric approach to the standard model in terms of the Clifford algebra Cl_7 is advanced. A key feature of the model is its use of an algebraic spinor for one generation of leptons and quarks. Spinor transformations separate into left-sided ("exterior") and right-sided ("interior") types. By definition, Poincare transformations are exterior ones. We consider all rotations in the seven-dimensional space that (1) conserve the spacetime components of the particle and antiparticle currents and (2) do not couple the right-chiral neutrino. These rotations comprise additional exterior transformations that commute with the Poincare group and form the group SU(2)_L, interior ones that constitute SU(3)_C, and a unique group of coupled double-sided rotations with U(1)_Y symmetry. The spinor mediates a physical coupling of Poincare and isotopic symmetries within the restrictions of the Coleman--Mandula theorem. The four extra spacelike dimensions in the model form a basis for the Higgs isodoublet field, whose symmetry requires the chirality of SU(2). The charge assignments of both the fundamental fermions and the Higgs boson are produced exactly.Comment: 17 pages, LaTeX requires iopart. Accepted for publication in J. Phys. A: Math. Gen. 9 Mar 2001. Typos correcte

    Multiphase complete exchange on a circuit switched hypercube

    Get PDF
    On a distributed memory parallel computer, the complete exchange (all-to-all personalized) communication pattern requires each of n processors to send a different block of data to each of the remaining n - 1 processors. This pattern is at the heart of many important algorithms, most notably the matrix transpose. For a circuit switched hypercube of dimension d(n = 2(sup d)), two algorithms for achieving complete exchange are known. These are (1) the Standard Exchange approach that employs d transmissions of size 2(sup d-1) blocks each and is useful for small block sizes, and (2) the Optimal Circuit Switched algorithm that employs 2(sup d) - 1 transmissions of 1 block each and is best for large block sizes. A unified multiphase algorithm is described that includes these two algorithms as special cases. The complete exchange on a hypercube of dimension d and block size m is achieved by carrying out k partial exchange on subcubes of dimension d(sub i) Sigma(sup k)(sub i=1) d(sub i) = d and effective block size m(sub i) = m2(sup d-di). When k = d and all d(sub i) = 1, this corresponds to algorithm (1) above. For the case of k = 1 and d(sub i) = d, this becomes the circuit switched algorithm (2). Changing the subcube dimensions d, varies the effective block size and permits a compromise between the data permutation and block transmission overhead of (1) and the startup overhead of (2). For a hypercube of dimension d, the number of possible combinations of subcubes is p(d), the number of partitions of the integer d. This is an exponential but very slowly growing function and it is feasible over these partitions to discover the best combination for a given message size. The approach was analyzed for, and implemented on, the Intel iPSC-860 circuit switched hypercube. Measurements show good agreement with predictions and demonstrate that the multiphase approach can substantially improve performance for block sizes in the 0 to 160 byte range. This range, which corresponds to 0 to 40 floating point numbers per processor, is commonly encountered in practical numeric applications. The multiphase technique is applicable to all circuit-switched hypercubes that use the common e-cube routing strategy
    corecore