957 research outputs found

    The Impact of Network Latency on the Synchronization of Real-World IEEE 1588-2008 Devices Using 1588 and non-1588 Aware Switches

    Get PDF
    Precision Time Protocol (PTP) is a high precision time synchronization protocol designed to operate over a local area network. PTP, often referred to as 1588, is defined by the IEEE Standard 1588(TM)-2008. The protocol theoretically allows synchronization at the nanosecond level. New devices with support for 1588 are emerging into the market, but there have been few studies on real 1588 devices. Our research was broken into two parts: Phase 1 and Phase 2. Phase 1 studied performance of the protocol in an environment where two 1588 devices are connected via a network in which impairments that are typically observed in real networks are introduced and non-1588 devices are present. Measuring the Pulse-Per-Second (PPS) clock outputs of the 1588 boards, we were able to calculate the standard deviation and the mean synchronization error of the 1588 clocks. When we applied latency via network emulators and traffic generators between the 1588 connections, we found that 1588 boards were unable to maintain high accuracy time synchronization under variable and asymmetric latency. The results provide valuable insight into the real-world accuracy and robustness because it is rare that a network will contain neither variable or asymmetric latency. In Phase 2 we studied the impact of latency and high-bandwidth background traffic on 1588 clock synchronization when connected through 1588 and non-1588 aware switches. We found that 1588 aware switches provide higher precision time synchronization in small networks; but in large networks where congestion is present 1588 aware switches were unable to maintain high accuracy clock synchronization without prioritization. Our results also show that having cut-through Enterprise Ethernet switches connected to high congestion endpoints with priorities enabled is adequate for maintaining sub-microsecond synchronization performance

    A Sub-Terahertz Sliding Correlator Channel Sounder with Absolute Timing using Precision Time Protocol over Wi-Fi

    Full text link
    Radio channels at mmWave and sub-THz frequencies for 5G and 6G communications offer large channel bandwidths (hundreds of MHz to several GHz) to achieve multi-Gbps data rates. Accurate modeling of the radio channel for these wide bandwidths requires capturing the absolute timing of multipath component (MPC) propagation delays with sub-nanosecond accuracy. Achieving such timing accuracy is challenging due to clock drift in untethered transmitter (TX) and receiver (RX) clocks used in time-domain channel sounders, yet will become vital in many future 6G applications. This paper proposes a novel solution utilizing precision time protocol (PTP) and periodic drift correction to achieve absolute timing for MPCs in power delay profiles (PDPs) --captured as discrete samples using sliding correlation channel sounders. Two RaspberryPi computers are programmed to implement PTP over a dedicated Wi-Fi link and synchronize the TX and RX Rubidium clocks continuously every second. This synchronization minimizes clock drift, reducing PDP sample drift to 150 samples/hour, compared to several thousand samples/hour without synchronization. Additionally, a periodic drift correction algorithm is applied to eliminate PDP sample drift and achieve sub-nanosecond timing accuracy for MPC delays. The achieved synchronicity eliminates the need for tedious and sometimes inaccurate ray tracing to synthesize omnidirectional PDPs from directional measurements. The presented solution shows promise in myriad applications, including precise position location and distributed systems that require sub-nanosecond timing accuracy and synchronization among components.Comment: 6 pages, 7 figures, 3 tables, IEEE Global Communications Conference (GLOBECOM) 202

    Hybrid time synchronization for Underwater Sensor Networks

    Full text link

    Synchronization of streamed audio between multiple playback devices over an unmanaged IP network

    Get PDF
    When designing and implementing a prototype supporting inter-destination media synchronization – synchronized playback between multiple devices receiving the same stream – there are a lot of aspects that need to be considered, especially when working with unmanaged networks. Not only is a proper streaming protocol essential, but also a way to obtain and maintain the synchronization of the clocks of the devices. The thesis had a few constraints, namely that the server producing the stream should be written for the .NET-platform and that the clients receiving it should be using the media framework GStreamer. This framework provides methods for both achieving synchronization as well as resynchronization. As the provided resynchro- nization methods introduced distortions in the audio, an alternative method was implemented. This method focused on minimizing the distortions, thus maintain- ing a smooth playback. After the prototype had been implemented, it was tested to see how well it performed under the influence of packet loss and delay. The accuracy of the synchronization was also tested under optimal conditions using two different time synchronization protocols. What could be concluded from this was that a good synchronization could be maintained on unloaded networks using the proposed method, but when introducing delay the prototype struggled more. This was mainly due to the usage of the Network Time Protocol (NTP), which is known to perform badly on networks with asymmetric paths.When working with synchronized playback it is not enough just obtain- ing it – it also needs to be maintained. Implementing a prototype thus involves many parts ranging from choosing a proper streaming protocol, to handling glitch free resynchronization of audio. Synchronization between multiple speakers has a wide area of application, ranging from home entertainment solutions to big malls where announcements should appear synchronized over the entire perimeter. In order to achieve this, two main parts are involved: the streaming of the audio, and the actual synchronization. The streaming itself poses problems mostly since the prototype should not only work on dedicated networks, but rather on all kinds, such as the Internet. As the information over these networks are transmitted in packets, and the path from source to destination crosses many sub networks, the packets may be delayed or even lost. This may create an audible distortion in the playback. The next part is the synchronization. This is most easily achieved by putting a time on each packet stating when in the future it should be played out. If then all receivers play it back at the specified time, synchronization is achieved. This however requires that all the receivers share the idea of when a specific time is – the clocks at all the receivers must be synchronized. By using existing software and hardware solutions, such as the Network Time Protocol (NTP) or the Precision Time Protocol (PTP), this can be accomplished. The accuracy of the synchronization is therefore partly dependent on how well these solutions work. Another valid aspect is how accurate the synchronization must be for the sound to be perceived as synchronized by humans. This is usually in the range of a few tens of milliseconds to five milliseconds depending on the sound. When a global time has been distributed to all receivers, matters get more complicated as there is more than one clock to consider at each receiver. Apart from the previously mentioned clock, now called the ’system clock’, there is also an audio clock, which is a hardware clock positioned on the sound card. This audio clock decides the rate at which media is played out. Altering the system clock to synchronize it to a common time is one thing, but altering the audio clock while media is being played will inevitably mean a jump in the playback, and thus a distortion. Although an initial synchronization can be achieved, the two clocks will over time tick in slightly different pace, thus drifting away from each other. This creates a need for the audio clock to continuously correct itself to follow the system clock. In the media framework GStreamer, used for handling the media at the re- ceivers, two alternatives to solve the correction problem were available. Quick evaluations of these two methods however showed that either audible glitches or ’oscillations’ occurred in the sound, when the clocks were corrected. A new method, which basically combines the two existing, was therefore implemented. With this method the audio clock is continuously corrected, but in a smaller and less aggressive way. Listening tests revealed much smaller, often not audible, distortions, while the synchronization performance was at par with the existing methods. More thorough testing showed that the synchronization over networks with light traffic was in the microsecond-range, thus far below the threshold of what will appear as synchronized. During worse conditions – simulated hostile environments – the synchronization quickly reached unacceptable levels though. This was due to the previously mentioned NTP, and not the implemented method on the other hand

    Clock synchronisation for UWB and DECT communication networks

    Get PDF
    Synchronisation deals with the distribution of time and/or frequency across a network of nodes dispersed in an area, in order to align their clocks with respect to time and/or frequency. It remains an important requirement in telecommunication networks, especially in Time Division Duplexing (TDD) systems such as Ultra Wideband (UWB) and Digital Enhanced Cordless Telecommunications (DECT) systems. This thesis explores three di erent research areas related to clock synchronisation in communication networks; namely algorithm development and implementation, managing Packet Delay Variation (PDV), and coping with the failure of a master node. The first area proposes a higher-layer synchronisation algorithm in order to meet the specific requirements of a UWB network that is based on the European Computer Manufacturers Association (ECMA) standard. At up to 480 Mbps data rate, UWB is an attractive technology for multimedia streaming. Higher-layer synchronisation is needed in order to facilitate synchronised playback at the receivers and prevent distortion, but no algorithm is de ned in the ECMA-368 standard. In this research area, a higher-layer synchronisation algorithm is developed for an ECMA-368 UWB network. Network simulations and FPGA implementation are used to show that the new algorithm satis es the requirements of the network. The next research area looks at how PDV can be managed when Precision Time Protocol (PTP) is implemented in an existing Ethernet network. Existing literature indicates that the performance of a PDV ltering algorithm usually depends on the delay pro le of the network in which it is applied. In this research area, a new sample-mode PDV filter is proposed which is independent of the shape of the delay profile. Numerical simulations show that the sample-mode filtering algorithm is able to match or out-perform the existing sample minimum, mean, and maximum filters, at differentlevels of network load. Finally, the thesis considers the problem of dealing with master failures in a PTP network for a DECT audio application. It describes the existing master redundancy techniques and shows why they are unsuitable for the specific application. Then a new alternate master cluster technique is proposed along with an alternative BMCA to suit the application under consideration. Network simulations are used to show how this technique leads to a reduction in the total time to recover from a master failure

    Providing Complete Precision Timing Solution for Hospitals by GPS Time Synchronized with MCS

    Get PDF
    The time is very important in the life and hasa special significance for hospitals, Where is specially used inoperating rooms, Nurse Call System (NCS) , various medicaltests and many other medical services. Those importantthings are mainly to use Master Clock System (MCS) in thehospitals. In this paper we provided high precision time forhospitals by used Global Positioning System (GPS) timesynchronized with MCS. The time will get synchronizedfrom satellite via GPS according to the Time Zone. GPSreceivers can provide precise time, speed, and coursemeasurements. Westerstrand GPS unit uses a miniature 12-channel GPS will use in the system and its compact size andlow power consumption make it ideal for this application.The system consists of Master clock control unit, GPSreceiver with antenna and related accessories

    Aggregated Reverse Time Transfer

    Get PDF
    Monitoring mechanisms are a critical component of the security and maintenance of high precision timing networks. Any and all guarantees of determinism and correctness are invalidated if a synchronous network malfunctions or is compromised by an attacker. Existing mechanisms allow for a comprehensive view of the distribution of time throughout a network, but they do not scale to large networks. I propose a new method called aggregated reverse time transfer (ARTT), which redefines the existing mechanisms to include a new aggregation scheme that serves the dual purpose of distributed data summarization and anomaly detection for networks of any size. With this thesis I provide a full specification and implementation of the ARTT mechanism, test both the outlier detection and model accuracy on a real timing network, and detail the steps necessary to perform stable-state outlier detection and aggregation on large-scale networks

    Tarkan ja luotettavan ajan siirto kantaverkossa

    Get PDF
    This master’s thesis is about time distribution that supports substation applications needed for power transmission. The work was done for the Telecommunication department of Finland’s power transmission system operator Fingrid Oyj. This thesis answers to the following question: What is the need for accurate and synchronized time in power substations and how it will be delivered? Fingrid’s telecommunication network supports the power transmission grid and its operation. Telecommunication network can distribute time to power substations for the applications that need synchronized and accurate time. Current telecommunication equipment used in Fingrid is getting old and new techniques are planned to be implemented. When Fingrid is acquiring new communication equipment, they need to set requirements on the capability to distribute time. This thesis is an initial effort to investigate time distribution requirements for Fingrid’s needs. This thesis aids Fingrid Telecommunication department to define requirements for time distribution. For this thesis, I met with multiple Fingrid professionals, telecommunication device suppliers and time distribution researchers. This thesis answers to its research questions by means of a literature review and interviews.Tämä diplomityö käsittelee ajansiirron vaikutusta sähköasemasovellusten toimintaan. Työ tehtiin Suomen kantaverkkoyhtiö Fingrid Oyj:n tietoliikenneyksikölle. Fingridin tietoliikenneverkko on osa kantaverkkoa ja mahdollistaa sähköjärjestelmän toiminteita. Tietoliikenneverkon yksi palvelu on synkronoidun ajan siirtäminen sähköasemille. Nykyinen tietoliikennetekniikka on vanhenemassa ja uutta laitteistoa suunnitellaan hankittavaksi ja testattavaksi. Tämän diplomityön tarkoitus on selvittää mikä on järkevä tapa toteuttaa ajan siirto ja kuinka tarkkaa sen pitää olla. Työ auttaa tietoliikenneyksikköä hankinnan vaatimusmäärittelyssä ajansiirron osalta. Työtä varten on tavattu monia Fingridin asiantuntijoita, tietoliikennelaitetoimittajia sekä ajansiirron asiantuntijoita. Työ vastaa tutkimuskysymykseen kirjallisuuskatsauksen ja haastattelujen perusteella

    System-on-chip architecture for secure sub-microsecond synchronization systems

    Get PDF
    213 p.En esta tesis, se pretende abordar los problemas que conlleva la protección cibernética del Precision Time Protocol (PTP). Éste es uno de los protocolos de comunicación más sensibles de entre los considerados por los organismos de estandarización para su aplicación en las futuras Smart Grids o redes eléctricas inteligentes. PTP tiene como misión distribuir una referencia de tiempo desde un dispositivo maestro al resto de dispositivos esclavos, situados dentro de una misma red, de forma muy precisa. El protocolo es altamente vulnerable, ya que introduciendo tan sólo un error de tiempo de un microsegundo, pueden causarse graves problemas en las funciones de protección del equipamiento eléctrico, o incluso detener su funcionamiento. Para ello, se propone una nueva arquitectura System-on-Chip basada en dispositivos reconfigurables, con el objetivo de integrar el protocolo PTP y el conocido estándar de seguridad MACsec para redes Ethernet. La flexibilidad que los modernos dispositivos reconfigurables proporcionan, ha sido aprovechada para el diseño de una arquitectura en la que coexisten procesamiento hardware y software. Los resultados experimentales avalan la viabilidad de utilizar MACsec para proteger la sincronización en entornos industriales, sin degradar la precisión del protocolo
    corecore