65 research outputs found

    Parameter identification in networks of dynamical systems

    Get PDF
    Mathematical models of real systems allow to simulate their behavior in conditions that are not easily or affordably reproducible in real life. Defining accurate models, however, is far from trivial and there is no one-size-fits-all solution. This thesis focuses on parameter identification in models of networks of dynamical systems, considering three case studies that fall under this umbrella: two of them are related to neural networks and one to power grids. The first case study is concerned with central pattern generators, i.e. small neural networks involved in animal locomotion. In this case, a design strategy for optimal tuning of biologically-plausible model parameters is developed, resulting in network models able to reproduce key characteristics of animal locomotion. The second case study is in the context of brain networks. In this case, a method to derive the weights of the connections between brain areas is proposed, utilizing both imaging data and nonlinear dynamics principles. The third and last case study deals with a method for the estimation of the inertia constant, a key parameter in determining the frequency stability in power grids. In this case, the method is customized to different challenging scenarios involving renewable energy sources, resulting in accurate estimations of this parameter

    Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    Get PDF
    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing. (C) 2017 Author(s).Fundacao para a Ciencia e a Tecnologia (FCT) [UID/Multi/00631/2013]European Structural and Investment Funds (FEEI) through the Competitiveness and Internationalization Operational Program - COMPETE 2020National Funds through FCT [ALG-01-0145-FEDER-016432/POCI-01-0145-FEDER-016432]European Commission under the project iBROW [645369]project COMBINA [TEC2015-65212-C3-3-PAEI/FEDER UE]Ramon y Cajal fellowshipinfo:eu-repo/semantics/publishedVersio

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Controlled synchronization in networks of diffusively coupled dynamical systems

    Get PDF
    • …
    corecore