280 research outputs found

    New criteria on global asymptotic synchronization of Duffing-type oscillator system

    Get PDF
    In this paper, we are concerned with global asymptotic synchronization of Duffing-type oscillator system. Without using matrix measure theory, graph theory and LMI method, which are recently widely applied to investigating global exponential/asymptotic synchronization for dynamical systems and complex networks, four novel sufficient conditions on global asymptotic synchronization for above system are acquired on the basis of constant variation method, integral factor method and integral inequality skills.&nbsp

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators

    Get PDF
    In this work we discuss the complete synchronization of two identical double-well Duffing oscillators unidirectionally coupled, from the point of view of symbolic dynamics. Working with Poincar´e cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized. We obtained analytically the threshold value of the coupling parameter for the synchronization of two unimodal and two bimodal piecewise linear maps, which by semi-conjugacy, under certain conditions, gives us information about the synchronization of the Duffing oscillators

    Chimera states emerging from dynamical trapping in chaotic saddles

    Full text link
    Nonlinear systems possessing nonattracting chaotic sets, such as chaotic saddles, embedded in their state space may oscillate chaotically for a transient time before eventually transitioning into some stable attractor. We show that these systems, when networked with nonlocal coupling in a ring, are capable of forming chimera states, in which one subset of the units oscillates periodically in a synchronized state forming the coherent domain, while the complementary subset oscillates chaotically in the neighborhood of the chaotic saddle constituting the incoherent domain. We find two distinct transient chimera states distinguished by their abrupt or gradual termination. We analyze the lifetime of both chimera states, unraveling their dependence on coupling range and size. We find an optimal value for the coupling range yielding the longest lifetime for the chimera states. Moreover, we implement transversal stability analysis to demonstrate that the synchronized state is asymptotically stable for network configurations studied here
    • …
    corecore