2,047 research outputs found

    A Nanoscale Parametric Feedback Oscillator

    Get PDF
    We describe and demonstrate a new oscillator topology, the parametric feedback oscillator (PFO). The PFO paradigm is applicable to a wide variety of nanoscale devices and opens the possibility of new classes of oscillators employing innovative frequency-determining elements, such as nanoelectromechanical systems (NEMS), facilitating integration with circuitry and system-size reduction. We show that the PFO topology can also improve nanoscale oscillator performance by circumventing detrimental effects that are otherwise imposed by the strong device nonlinearity in this size regime

    Injection locking of optomechanical oscillators via acoustic waves

    Full text link
    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical

    Analysis of coupling vibration characteristics of electrically driven pile hammer linkage system

    Get PDF
    In order to solve the problem that electromechanical coupling had influences on the control effect of multi-pile hammers linkage, the coupling influence rules were studied. With the complex system of hammer-pile-soil being simplified, the dynamic model was constructed for the two pile hammers vibration system. The mathematical equations of systemic electromechanical coupling were established. Based on the Hamilton principle, synchronous operation conditions and system stability were established. Simulation model was developed with MATLAB/Simulink for numerical simulation. The electromechanical coupling processes and the basic system rules were obtained under different electrical motorsā€™ speeds, the initial phase differences, soil parameters and fixing parameters. It could be found that electromechanical coupling might result in self-synchronization under given conditions. Finally, the mathematical modelā€™s validity, theoretical derivation and simulation results were proved by some experiments. The analytical conclusions of electromechanical coupling rules provide the theoretical evidence for making control strategy on electric control linkage mode, and the basis for related engineering applications and experiments

    Controlling phonons and photons at the wavelength-scale: silicon photonics meets silicon phononics

    Get PDF
    Radio-frequency communication systems have long used bulk- and surface-acoustic-wave devices supporting ultrasonic mechanical waves to manipulate and sense signals. These devices have greatly improved our ability to process microwaves by interfacing them to orders-of-magnitude slower and lower loss mechanical fields. In parallel, long-distance communications have been dominated by low-loss infrared optical photons. As electrical signal processing and transmission approaches physical limits imposed by energy dissipation, optical links are now being actively considered for mobile and cloud technologies. Thus there is a strong driver for wavelength-scale mechanical wave or "phononic" circuitry fabricated by scalable semiconductor processes. With the advent of these circuits, new micro- and nanostructures that combine electrical, optical and mechanical elements have emerged. In these devices, such as optomechanical waveguides and resonators, optical photons and gigahertz phonons are ideally matched to one another as both have wavelengths on the order of micrometers. The development of phononic circuits has thus emerged as a vibrant field of research pursued for optical signal processing and sensing applications as well as emerging quantum technologies. In this review, we discuss the key physics and figures of merit underpinning this field. We also summarize the state of the art in nanoscale electro- and optomechanical systems with a focus on scalable platforms such as silicon. Finally, we give perspectives on what these new systems may bring and what challenges they face in the coming years. In particular, we believe hybrid electro- and optomechanical devices incorporating highly coherent and compact mechanical elements on a chip have significant untapped potential for electro-optic modulation, quantum microwave-to-optical photon conversion, sensing and microwave signal processing.Comment: 26 pages, 5 figure
    • ā€¦
    corecore