4,116 research outputs found

    Object-based Information Flow Control in Peer-to-peer Publish/Subscribe Systems

    Get PDF
    Distributed systems are getting so scalable like IoT (Internet of Things) and P2P (Peer-to-Peer) systems that millions of devices are connected and support various types of applications. Here, distributed systems are required to be secure in addition to increasing the performance, reliability, and availability and reducing the energy consumption. In distributed systems, information in objects flows to other objects by transactions reading and writing data in the objects. Here, some information of an object may illegally flow to a subject which is not allowed to get the information of the object. Especially, a leakage of sensitive information is to be prevented from occurring. In order to keep information systems secure, illegal information flow among objects has to be prevented. Types of synchronization protocols are so far discussed based on read and write access rights in the RBAC (Role-Based Access Control) model to prevent illegal information flow.In this thesis, we newly propose a P2PPSO (P2P type of topic-based PS (Publish/Subscribe) with Object concept) model and discuss the models and protocols for information flow control. A P2PPSO model is composed of peer processes (peers) which communicate with one another by publishing and subscribing event messages. Each peer can both publish and receive event messages with no centralized coordinator compared with traditional centralized PS models. Each event message published by a source peer carries information to a target peer. The contents carried by an event message are considered to be composed of objects. An object is a unit of data resource. Objects are characterized by topics, and each event message is also characterized by topics named publication topics.In order to make a P2PPSO system secure, we first newly propose a TBAC (Topic-Based Access Control) model. Here, an access right is a pair ⟨t, op⟩ of a topic t and a publish or subscribe operation op. A peer is allowed to publish an event message with publication topics and subscribe interesting topics only if the publication and subscription access rights are granted to the peer, respectively. Suppose an event message e_j published by a peer p_j carries an object on some topics into a target peer p_i. Here, information in the peer p_j illegally flows to the peer p_i if the target peer p_i is not allowed to subscribe the topics. An illegal object is an object whose topics a target peer is not allowed to subscribe. Even if an event message is received by a target peer by checking topics, objects carried by the event message may be illegal at the target peer. Hence, first, we propose a TOBS (Topics-of-Objects-Based Synchronization) protocol to prevent target peers from being delivered illegal objects in the P2PPSO system. Here, even if an event message is received by a target peer, illegal objects in the event message are not delivered to the target peer.In the TOBS protocol, every event message is assumed to be causally delivered to every common target peer in the underlying network. Suppose an event message e_2 is delivered to a target peer p_i before another event message e_1 while the event message e_1 causally precedes the event message e_2 (e_1 →_c e_2). Here, the event message e_2 is premature at the peer p_i. Hence, secondly, we propose a TOBSCO (TOBS with Causally Ordering delivery) protocol where the function to causally deliver every pair of event messages is added to the TOBS protocol. Here, we assume the underlying network supports reliable communication among every pair of peers, i.e. no event message loss, no duplicate message, and the sending order delivery of messages. Every pair of event messages received by using topics are causally delivered to every common target peer by using the vector of sequence numbers.In the TOBS and TOBSCO protocols, objects delivered to target peers are held as replicas of the objects by the target peers. If a peer updates data of an object, the peer distributes event messages, i.e. update event messages, to update every replica of the object obtained by other peers. If a peer updates an object without changing topics, the object is referred to as altered. Here, an update event message for the altered object is meaningless since peers check only topics to exchange event messages. Hence, thirdly, we propose an ETOBSCO (Efficient TOBSCO) protocol where update event messages of objects are published only if topics of the objects are updated to reduce the network overhead.In the evaluation, first, we show how many numbers of event messages and objects are prevented from being delivered to target peers in the TOBS protocol. Next, we show every pair of event messages are causally delivered but it takes longer to deliver event messages in the TOBSCO protocol than the TOBS protocol. Finally, we show the fewer number of event messages are delivered while it takes longer to update replicas of altered objects in the ETOBSCO protocol than the TOBSCO protocol.博士(工学)法政大学 (Hosei University

    Time Synchronized Low-voltage Measurements for Smart Grids

    Get PDF
    AbstractThis paper analyzes possible future development of Smart Grids based on more detailed monitoring of grids. The authors propose measurement methods for the low-voltage level of Smart Grids, and for this purpose they exploit approaches known from the corresponding high-voltage level. Using time synchronization and intelligent end-point devices enables us to collect essential data for faster detection of illegal consumers, branch overload detection, power-quality verification, and other processes. Such information can improve the overall stability and reliability of a grid by covering the low-voltage level that is characterized by the dynamic change of topology or different disturbance sources and has gained the status of being the primary source for the majority of customers

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Network Interface Design for Network-on-Chip

    Get PDF
    In the culture of globalized integrated circuit (IC, a.k.a chip) production, the use of Intellectual Property (IP) cores, computer aided design tools (CAD) and testing services from un-trusted vendors are prevalent to reduce the time to market. Unfortunately, the globalized business model potentially creates opportunities for hardware tampering and modification from adversary, and this tampering is known as hardware Trojan (HT). Network-on-chip (NoC) has emerged as an efficient on-chip communication infrastructure. In this work, the security aspects of NoC network interface (NI), one of the most critical components in NoC will be investigated and presented. Particularly, the NI design, hardware attack models and countermeasures for NI in a NoC system are explored. An OCP compatible NI is implemented in an IBM0.18ìm CMOS technology. The synthesis results are presented and compared with existing literature. Second, comprehensive hardware attack models targeted for NI are presented from system level to circuit level. The impact of hardware Trojans on NoC functionality and performance are evaluated. Finally, a countermeasure method is proposed to address the hardware attacks in NIs

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    UNCONVENTIONAL WARFARE LOGISTICS: UTILIZING NETWORKED NON-STANDARD APPROACHES AND DECEPTION

    Get PDF
    Throughout history, many military campaigns, conventional or irregular, have failed when they were not well supported logistically. “ARSOF 2022,” written by Charles Cleveland and appearing in the spring 2013 issue of Special Warfare, states that United States Army Special Operations Forces will be the lead component to conduct unconventional warfare (UW) in the future. However, a 2013 RAND Arroyo Center study, Non-Standard Logistics Support for Unconventional Warfare: Sourcebook for Planning and Capability Development, written by Matthew E Boyer et al. on “non-standard logistics” identified significant gaps in existing doctrine, authorities, training, and other areas that support such operations. While providing recommendations, RAND did not provide specific solutions to the shortcomings. This thesis proposes a general model to conduct UW resupply, and operationalizes this model in the form of a UW logistics planning and execution cycle. The six-step cycle (RANDOM), begins with receipt of mission (R). Next, a multi-categorical UW logistics feasibility assessment (A) occurs. Following this assessment, a non-standard (N) resupply approach is chosen, and a supporting military deception plan (D) is incorporated into the approach. The resupply operation (O) is then executed, and feedback from various sources allows modifications (M) and improvements to the cycle for future resupply operations. This thesis concludes with recommendations for leaders and planners alike and offers a solution to the current lack of existing doctrine surrounding this topic.Major, United States ArmyApproved for public release; distribution is unlimited

    A Transactional Model and Platform for Designing and Implementing Reactive Systems

    Get PDF
    A reactive program is one that has ongoing interactions with its environment. Reactive programs include those for embedded systems, operating systems, network clients and servers, databases, and smart phone apps. Reactive programs are already a core part of our computational and physical infrastructure and will continue to proliferate within our society as new form factors, e.g. wireless sensors, and inexpensive (wireless) networking are applied to new problems. Asynchronous concurrency is a fundamental characteristic of reactive systems that makes them difficult to develop. Threads are commonly used for implementing reactive systems, but they may magnify problems associated with asynchronous concurrency, as there is a gap between the semantics of thread-based computation and the semantics of reactive systems: reactive software developed with threads often has subtle timing bugs and tends to be brittle and non-reusable as a holistic understanding of the software becomes necessary to avoid concurrency hazards such as data races, deadlock, and livelock. Based on these problems with the state of the art, we believe a new model for developing and implementing reactive systems is necessary. This dissertation makes four contributions to the state of the art in reactive systems. First, we propose a formal yet practical model for (asynchronous) reactive systems called reactive components. A reactive component is a set of state variables and atomic transitions that can be composed with other reactive components to yield another reactive component. The transitions in a system of reactive components are executed by a scheduler. The reactive component model is based on concepts from temporal logic and models like UNITY and I/O Automata. The major contribution of the reactive component model is a formal method for principled composition, which ensures that 1) the result of composition is always another reactive component, for consistency of reasoning; 2) systems may be decomposed to an arbitrary degree and depth, to foster divide-and-conquer approaches when designing and re-use when implementing; 3)~the behavior of a reactive component can be stated in terms of its interface, which is necessary for abstraction; and 4) properties of reactive components that are derived from transitions protected by encapsulation are preserved through composition and can never be violated, which permits assume-guarantee reasoning. Second, we develop a prototypical programming language for reactive components called rcgo that is based on the syntax and semantics of the Go programming language. The semantics of the rcgo language enforce various aspects of the reactive component model, e.g., the isolation of state between components and safety of concurrency properties, while permitting a number of useful programming techniques, e.g., reference and move semantics for efficient communication among reactive components. For tractability, we assume that each system contains a fixed set of components in a fixed configuration. Third, we provide an interpreter for the rcgo language to test the practicality of the assumptions upon which the reactive component model are founded. The interpreter contains an algorithm that checks for composition hazards like recursively defined transitions and non-deterministic transitions. Transitions are executed using a novel calling convention that can be implemented efficiently on existing architectures. The run-time system also contains two schedulers that use the results of composition analysis to execute non-interfering transitions concurrently. Fourth, we compare the performance of each scheduler in the interpreter to the performance of a custom compiled multi-threaded program, for two reactive systems. For one system, the combination of the implementation and hardware biases it toward an event-based solution, which was confirmed when the reactive component implementation outperformed the custom implementation due to reduced context switching. For the other system, the custom implementation is not prone to excessive context switches and outperformed the reactive component implementations. These results demonstrate that reactive components may be a viable alternative to threads in practice, but that additional work is necessary to generalize this claim
    • …
    corecore