4,588 research outputs found

    Avoiding Unnecessary Information Loss: Correct and Efficient Model Synchronization Based on Triple Graph Grammars

    Full text link
    Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple Graph Grammars (TGGs) specify model consistency by means of rules that describe how to create consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when deleted elements contain information that is not represented in the second model, this information cannot be recovered easily. Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements. In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have considerably decreased information loss and improved performance compared to former model synchronization processes based on TGGs.Comment: 33 pages, 20 figures, 3 table

    Tree automata and attribute grammars

    Get PDF
    The translational mechanism of attribute grammars using tree automata are investigated. The pushdown tree-to-string transducer with a certain synchronization facility as a model to realize transformations by attribute grammars is proposed and its basic properties using tree-walking finite state automata are studied. To demonstrate the utility of this model, it is shown that noncircular attribute grammars are equally powerful as arbitrary attribute grammars, and a method is provided to show that a certain type of transformations is impossible by attribute grammars

    Parallel Graph Transformation for Model Simulation applied to Timed Transition Petri Nets

    Get PDF
    Proceedings of the Workshop on Graph Transformation and Visual Modelling Techniques (GT-VMT 2004)This work discusses the use of parallel graph transformation systems for (multi-formalism) modeling and simulation and their implementation in the meta-modeling tool AToM3. As an example, a simulator for Timed Transition Petri Nets (TTPN) is modeled using parallel graph transformation.This work has been partially sponsored by the SEGRAVIS network and the Spanish Ministry of Science and Technology (TIC2002-01948)

    Coordination of Dynamic Software Components with JavaBIP

    Get PDF
    JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.Comment: Technical report that accompanies the paper accepted at the 14th International Conference on Formal Aspects of Component Softwar

    Modality effects in implicit artificial grammar learning: An EEG study

    Get PDF
    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences. (C) 2018 Elsevier B.V. All rights reserved.Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour; Fundacao para a Ciencia e Tecnologia [PTDC/PSI-PC0/110734/2009, UID/BIM/04773/2013, CBMR 1334, PEst-OE/EQB/1A0023/2013, UM/PSI/00050/2013

    A Solution to the Flowgraphs Case Study using Triple Graph Grammars and eMoflon

    Full text link
    After 20 years of Triple Graph Grammars (TGGs) and numerous actively maintained implementations, there is now a need for challenging examples and success stories to show that TGGs can be used for real-world bidirectional model transformations. Our primary goal in recent years has been to increase the expressiveness of TGGs by providing a set of pragmatic features that allow a controlled fallback to programmed graph transformations and Java. Based on the Flowgraphs case study of the Transformation Tool Contest (TTC 2013), we present (i) attribute constraints used to express complex bidirectional attribute manipulation, (ii) binding expressions for specifying arbitrary context relationships, and (iii) post-processing methods as a black box extension for TGG rules. In each case, we discuss the enabled trade-off between guaranteed formal properties and expressiveness. Our solution, implemented with our metamodelling and model transformation tool eMoflon (www.emoflon.org), is available as a virtual machine hosted on Share.Comment: In Proceedings TTC 2013, arXiv:1311.753

    Algebraic properties of structured context-free languages: old approaches and novel developments

    Full text link
    The historical research line on the algebraic properties of structured CF languages initiated by McNaughton's Parenthesis Languages has recently attracted much renewed interest with the Balanced Languages, the Visibly Pushdown Automata languages (VPDA), the Synchronized Languages, and the Height-deterministic ones. Such families preserve to a varying degree the basic algebraic properties of Regular languages: boolean closure, closure under reversal, under concatenation, and Kleene star. We prove that the VPDA family is strictly contained within the Floyd Grammars (FG) family historically known as operator precedence. Languages over the same precedence matrix are known to be closed under boolean operations, and are recognized by a machine whose pop or push operations on the stack are purely determined by terminal letters. We characterize VPDA's as the subclass of FG having a peculiarly structured set of precedence relations, and balanced grammars as a further restricted case. The non-counting invariance property of FG has a direct implication for VPDA too.Comment: Extended version of paper presented at WORDS2009, Salerno,Italy, September 200
    • …
    corecore