3,431 research outputs found

    Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems

    Full text link
    In a recent paper, wavelet analysis was used to perturb the coupling matrix in an array of identical chaotic systems in order to improve its synchronization. As the synchronization criterion is determined by the second smallest eigenvalue λ2\lambda_2 of the coupling matrix, the problem is equivalent to studying how λ2\lambda_2 of the coupling matrix changes with perturbation. In the aforementioned paper, a small percentage of the wavelet coefficients are modified. However, this result in a perturbed matrix where every element is modified and nonzero. The purpose of this paper is to present some results on the change of λ2\lambda_2 due to perturbation. In particular, we show that as the number of systems n→∞n \to \infty, perturbations which only add local coupling will not change λ2\lambda_2. On the other hand, we show that there exists perturbations which affect an arbitrarily small percentage of matrix elements, each of which is changed by an arbitrarily small amount and yet can make λ2\lambda_2 arbitrarily large. These results give conditions on what the perturbation should be in order to improve the synchronizability in an array of coupled chaotic systems. This analysis allows us to prove and explain some of the synchronization phenomena observed in a recently studied network where random coupling are added to a locally connected array. Finally we classify various classes of coupling matrices such as small world networks and scale free networks according to their synchronizability in the limit.Comment: 7 pages, 2 figures, 1 tabl

    Violation of hyperbolicity via unstable dimension variability in a chain with local hyperbolic chaotic attractors

    Full text link
    We consider a chain of oscillators with hyperbolic chaos coupled via diffusion. When the coupling is strong the chain is synchronized and demonstrates hyperbolic chaos so that there is one positive Lyapunov exponent. With the decay of the coupling the second and the third Lyapunov exponents approach zero simultaneously. The second one becomes positive, while the third one remains close to zero. Its finite-time numerical approximation fluctuates changing the sign within a wide range of the coupling parameter. These fluctuations arise due to the unstable dimension variability which is known to be the source for non-hyperbolicity. We provide a detailed study of this transition using the methods of Lyapunov analysis.Comment: 24 pages, 13 figure

    Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme

    Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems

    Get PDF
    The existence of anticipatory, complete and lag synchronization in a single system having two different time-delays, that is feedback delay Ï„1\tau_1 and coupling delay Ï„2\tau_2, is identified. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay Ï„2\tau_2 with suitable stability condition is discussed. The existence of anticipatory and lag synchronization is characterized both by the minimum of similarity function and the transition from on-off intermittency to periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure
    • …
    corecore