71 research outputs found

    Design of zigbee transceiver for IEEE 802.15.4 using matlab/simulink

    Get PDF
    ZigBee technology was developed for a wireless personal area networks (PAN), aimed at control and military applications with low data rate and low power consumption. This thesis is mainly focusing on development of Matlab/Simulink model for ZigBee transceiver at physical layer using IEEE 802.15.4. ZigBee is a low-cost, low-power, wireless mesh networking standard. First, the low cost allows the technology to be widely deployed in wireless control and monitoring applications. Second, the low power-usage allows longer life with smaller batteries. Third, the mesh networking provides high reliability and more extensive range. The work presented here is to show how we can implement ZigBee transceiver with its specifications by using Matlab/simulink, without using complex mathematical blocks. A ZigBee chip can tested and prepared by shifting the whole work from matlab environment to cadance environment. This can be done by HDL languages like Verilog HDL. Here, Minimum Shift Keying (MSK) modulation technique is described, an analysis of which shows that the theoretical maximum bandwidth efficiency of MSK is 2 bits/s/Hz which is same as for Quadrature Phase Shift Keying (QPSK) and Offset Quadrature Phase Shift Keying (Offset QPSK). The implementation clearly confirms the viability of theoritical approach. Results show that OQPSK modulation with half sine pulse shaping is perfectly employed ZigBee technology

    An FPGA Software Defined Radio Platform with a High-Level Synthesis Design Flow

    Get PDF
    International audienceSoftware defined radio (SDR) opens a new door to future Internet of Things with higher degree of designing flexibility in context of wireless system development. Prototyping a remote implementation of wireless protocols on a hardware over the web requires a highly versatile software radio platform along with laid-back designing tools. To this aim, an FPGA-based SDR scheme has been proposed combining Virtex-6 Perseus 6010 platform capabilities and a design flow based on High-Level Synthesis (HLS) tools. A full IEEE 802.15.4 (ZigBee) physical layer has been implemented on the proposed platform from a C-language dataflow specification. All the results have been analyzed to lead to a fair comparison between different design flows. Although the proposed SDR has some designing issues, it shows a noticeable designing potentiality to flexible prototyping of future wireless systems

    MOBILITY CONTROL IN WIRELESS SENSOR NETWORK

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. WSNs integrates many different technologies such as in hardware, software, data fusion, and applications. Hence, WSNs has received recently special research activities. WSNs have so many applications in different areas such as health-care systems, monitoring and control systems, rescue systems, and military applications. Since WSNs are usually deployed with large numbers of nodes in wide areas, they should be reliable, inexpensive, with very low power consumption, and with high redundancy to preserve the life-time of the whole network. In this M.Sc. thesis we consider one extremely important research topic in WSNs which is the mobility control. The mobility control is analyzed theoretically as well as with extensive simulations. In the simulation scenarios, static sensor nodes are first randomly deployed to the decided area. Then a reference trajectory for the mobile node is created based on the observed point phenomena, and the network guides the mobile node to move along the trajectory. A simulation platform called PiccSIM is used to simulate the scenarios. It is developed by the Communication and Control Engineering Groups at Helsinki University of Technology (TKK). The obtained results from these simulations are discussed and analyzed. This work opens the doors for more real applications in this area in the nearby future.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    An FPGA-Based Software Defined Radio Platform for the 2.4GHz ISM Band

    Get PDF
    A prototype of a Software Defined Radio (SDR) platform has been successfully designed and tested implementing a reconfigurable IEEE 802.11 and ZigBee receiver. The system exploits the reconfiguration capability of an FPGA for implementing a number of receiver configurations that share the same RF front-end. Configurations can be switched at run time, or can share the available logic and radio resource
    corecore