64 research outputs found

    Squared-down passivity based H∞ almost synchronization of homogeneous continuous-time multi-agent systems with partial-state coupling via static protocol

    Get PDF
    This paper studies H∞ almost state and output synchronizations of homogeneous multi-agent systems (MAS) with partial-state coupling with general linear agents affected by external disturbances. We will characterize when static linear protocols can be designed for state and output synchronization for a MAS such that the impact of disturbances on the network disagreement dynamics, expressed in terms of the H∞ norms of the corresponding closed-loop transfer function, is reduced to any arbitrarily small value. Meanwhile, the static protocol only needs rough information on the network graph, that is a lower bound for the real part and an upper bound for the modulus of the non-zero eigenvalues of the Laplacian matrix associated with the network graph. Our study focuses on three classes of agents which are squared-down passive, squared-down passifiable via output feedback and squared-down minimum-phase with relative degree 1

    State synchronization of linear and nonlinear agents in time-varying networks

    Get PDF
    This paper studies state synchronization of homogeneous time-varying networks with diffusive full-statecoupling or partial-state coupling. In the case of full-state coupling, linear agents as well as a class of nonlineartime-varying agents are considered. In the case of partial-state coupling, we only consider linear agents,but, in contrast with the literature, we do not require the agents in the network to be minimum phase or atmost weakly unstable. In both cases, the network is time-varying in the sense that the network graph switcheswithin an infinite set of graphs with arbitrarily small dwell time. A purely decentralized linear static protocolis designed for agents in the network with full-state coupling. For partial-state coupling, a linear dynamicprotocol is designed for agents in the network while using additional communication among controller variablesusing the same network. In both cases, the design is based on a high-gain methodology

    Solvability conditions and design for H∞ & H2 almost state synchronization of homogeneous multi-agent systems

    Get PDF
    This paper studies the H∞ and H2 almost state synchronization problem for homogeneous multi-agent systems with general linear agents affected by external disturbances and with a directed communication topology. Agents are connected via diffusive full-state coupling or diffusive partial-state coupling. A necessary and sufficient condition is developed for the solvability of the H∞ and H2 almost state synchronization problem. Moreover, a family of protocols based on either an algebraic Riccati equation (ARE) method or a directed eigen structure assignment method are developed such that the impact of disturbances on the network disagreement dynamics, expressed in terms of the H∞ and H2 norm of the corresponding closed-loop transfer function, is reduced to any arbitrarily small value. The protocol for full-state coupling is static, while for partial-state coupling it is dynamic

    Output Consensus Control for Heterogeneous Multi-Agent Systems

    Get PDF
    We study distributed output feedback control of a heterogeneous multi-agent system (MAS), consisting of N different continuous-time linear dynamical systems. For achieving output consensus, a virtual reference model is assumed to generate the desired trajectory for which the MAS is required to track and synchronize. A full information (FI) protocol is assumed for consensus control. This protocol includes information exchange with the feed-forward signals. In this dissertation we study two different kinds of consensus problems. First, we study the consensus control over the topology involving time delays and prove that consensus is independent of delay lengths. Second, we study the consensus under communication constraints. In contrast to the existing work, the reference trajectory is transmitted to only one or a few agents and no local reference models are employed in the feedback controllers thereby eliminating synchronization of the local reference models. Both significantly lower the communication overhead. In addition, our study is focused on the case when the available output measurements contain only relative information from the neighboring agents and reference signal. Conditions are derived for the existence of distributed output feedback control protocols, and solutions are proposed to synthesize the stabilizing and consensus control protocol over a given connected digraph. It is shown that the H-inf loop shaping and LQG/LTR techniques from robust control can be directly applied to design the consensus output feedback control protocol. The results in this dissertation complement the existing ones, and are illustrated by a numerical example. The MAS approach developed in this dissertation is then applied to the development of autonomous aircraft traffic control system. The development of such systems have already started to replace the current clearance-based operations to trajectory based operations. Such systems will help to reduce human errors, increase efficiency, provide safe flight path, and improve the performance of the future flight

    Cooperative Control Reconfiguration in Networked Multi-Agent Systems

    Get PDF
    Development of a network of autonomous cooperating vehicles has attracted significant attention during the past few years due to its broad range of applications in areas such as autonomous underwater vehicles for exploring deep sea oceans, satellite formations for space missions, and mobile robots in industrial sites where human involvement is impossible or restricted, to name a few. Motivated by the stringent specifications and requirements for depth, speed, position or attitude of the team and the possibility of having unexpected actuators and sensors faults in missions for these vehicles have led to the proposed research in this thesis on cooperative fault-tolerant control design of autonomous networked vehicles. First, a multi-agent system under a fixed and undirected network topology and subject to actuator faults is studied. A reconfigurable control law is proposed and the so-called distributed Hamilton-Jacobi-Bellman equations for the faulty agents are derived. Then, the reconfigured controller gains are designed by solving these equations subject to the faulty agent dynamics as well as the network structural constraints to ensure that the agents can reach a consensus even in presence of a fault while simultaneously the team performance index is minimized. Next, a multi-agent network subject to simultaneous as well as subsequent actuator faults and under directed fixed topology and subject to bounded energy disturbances is considered. An H∞ performance fault recovery control strategy is proposed that guarantees: the state consensus errors remain bounded, the output of the faulty system behaves exactly the same as that of the healthy system, and the specified H∞ performance bound is guaranteed to be minimized. Towards this end, the reconfigured control law gains are selected first by employing a geometric control approach where a set of controllers guarantees that the output of the faulty agent imitates that of the healthy agent and the consensus achievement objectives are satisfied. Then, the remaining degrees of freedom in the selection of the control law gains are used to minimize the bound on a specified H∞ performance index. Then, control reconfiguration problem in a team subject to directed switching topology networks as well as actuator faults and their severity estimation uncertainties is considered. The consensus achievement of the faulty network is transformed into two stability problems, in which one can be solved offline while the other should be solved online and by utilizing information that each agent has received from the fault detection and identification module. Using quadratic and convex hull Lyapunov functions the control gains are designed and selected such that the team consensus achievement is guaranteed while the upper bound of the team cost performance index is minimized. Finally, a team of non-identical agents subject to actuator faults is considered. A distributed output feedback control strategy is proposed which guarantees that agents outputs’ follow the outputs of the exo-system and the agents states remains stable even when agents are subject to different actuator faults

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Synchronization for heterogeneous networks of weakly-non-minimum-phase, non-introspective agents without exchange of controller states

    Get PDF
    This paper studies the synchronization problem for undirected, weighted networks where agents are non-introspective (i.e. they have no access to any state or output) and do not need another communication layer to exchange internal controller states. The more significant is that this paper deals with weakly-non-minimum-phase agents. We consider heterogeneous networks with linear agents. A purely decentralized linear dynamical protocol based on a low-and-high gain methodology is designed for each agent, where the only information available for each agent is a weighted linear combination of its output relative to that of its neighboring
    • …
    corecore