108 research outputs found

    A Novel Encryption Method for Dorsal Hand Vein Images on a Microcomputer

    Get PDF
    In this paper, a Lorenz-like chaotic system was developed to encrypt the dorsal hand patterns on a microcomputer. First, the dorsal hand vein images were taken from the subjects via an infrared camera. These were subjected to two different processes called contrast enhancement and segmentation of vein regions. Second, the pre- and post-processed images were encrypted with a new encryption algorithm in the microcomputer environment. For the encryption process, random numbers were generated by the chaotic system. These random numbers were subjected to NIST-800-22 test which is the most widely accepted statistical test suite. The speeded up robust feature (SURF) matching algorithm was utilized in the initial condition sensitivity analysis of the encrypted images. The results of the analysis have shown that the proposed encryption algorithm can be used in identification and verification systems. The encrypted images were analyzed with histogram, correlation, entropy, pixel change rate (NPCR), initial condition sensitivity, data loss, and noise attacks which are frequently used for security analyses in the literature. In addition, the images were analyzed after noise attacks by means of peak signal-to-noise ratio (PSNR), mean square error (MSE), and the structural similarity index (SSIM) tests. It has been shown that the dorsal hand vein images can be used in identification systems safely with the help of the proposed method on microcomputers.This work was supported by the Qatar National-LibraryScopu

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Visual Cortical Traveling Waves: From Spontaneous Spiking Populations to Stimulus-Evoked Models of Short-Term Prediction

    Get PDF
    Thanks to recent advances in neurotechnology, waves of activity sweeping across entire cortical regions are now routinely observed. Moreover, these waves have been found to impact neural responses as well as perception, and the responses themselves are found to be structured as traveling waves. How exactly do these waves arise? Do they confer any computational advantages? These traveling waves represent an opportunity for an expanded theory of neural computation, in which their dynamic local network activity may complement the moment-to-moment variability of our sensory experience. This thesis aims to help uncover the origin and role of traveling waves in the visual cortex through three Works. In Work 1, by simulating a network of conductance-based spiking neurons with realistically large network size and synaptic density, distance-dependent horizontal axonal time delays were found to be important for the widespread emergence of spontaneous traveling waves consistent with those in vivo. Furthermore, these waves were found to be a dynamic mechanism of gain modulation that may explain the in-vivo result of their modulation of perception. In Work 2, the Kuramoto oscillator model was formulated in the complex domain to study a network possessing distance-dependent time delays. Like in Work 1, these delays produced traveling waves, and the eigenspectrum of the complex-valued delayed matrix, containing a delay operator, provided an analytical explanation of them. In Work 3, the model from Work 2 was adapted into a recurrent neural network for the task of forecasting the frames of videos, with the question of how such a biologically constrained model may be useful in visual computation. We found that the wave activity emergent in this network was helpful, as they were tightly linked with high forecast performance, and shuffle controls revealed simultaneous abolishment of both the waves and performance. All together, these works shed light on the possible origins and uses of traveling waves in the visual cortex. In particular, time delays profoundly shape the spatiotemporal dynamics into traveling waves. This was confirmed numerically (Work 1) and analytically (Work 2). In Work 3, these waves were found to aid in the dynamic computation of visual forecasting

    Nonlinear dynamics and applications of MEMS and NEMS resonators.

    Get PDF
    Rich nonlinear behaviours have been observed in microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) resonators. This dissertation has performed a systematic study of nonlinear dynamics in various MEMS and NEMS resonators that appear to be single, two coupled, arrayed, parametric driven and coupled with multiple-fields, with the aim of exploring novel applications. New study on dynamic performance of a single carbon nanotube resonator taking account of the surface induced initial stress has been performed. It is found that the initial stress causes the jumping points, the whirling and chaotic motions to appear at higher driving forces. Chaotic synchronization of two identical MEMS resonators has been theoretically achieved using Open-Plus-Closed-Loop (OPCL) method, and the coupled resonating system is designed as a mass detector that is believed to possess high resistance to noise. The idea of chaotic synchronization is then popularized into wireless sensor networks for the purpose of achieving secure communication. The arising of intrinsic localised mode has been studied in microelectromechanical resonators array that is designed intentionally for an energy harvester, which could potentially be used to achieve high/concentrated energy output. Duffing resonators with negative and positive spring constants can exhibit chaotic behaviour. Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos. Based on the principle of nanomechanical transistor and quantum shuttle mechanism, a high sensitive mass sensor that consists of two mechanically coupled NEMS resonators has been postulated, and the mass sensor which can be realized in large-scale has also been investigated and verified. Furthermore, an novel transistor that couples three physical fields at the same time, i.e. mechanical, optical and electrical, has been designed, and the coupled opto-electro-mechanical simulation has been performed. It is shown from the dynamic analysis that the stable working range of the transistor is much wider than that of the optical wave inside the cavity

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    • …
    corecore