2,987 research outputs found

    Performance and evaluation of real-time multicomputer control systems

    Get PDF
    Three experiments on fault tolerant multiprocessors (FTMP) were begun. They are: (1) measurement of fault latency in FTMP; (2) validation and analysis of FTMP synchronization protocols; and investigation of error propagation in FTMP

    Scheduling techniques to improve the worst-case execution time of real-time parallel applications on heterogeneous platforms

    Get PDF
    The key to providing high performance and energy-efficient execution for hard real-time applications is the time predictable and efficient usage of heterogeneous multiprocessors. However, schedulability analysis of parallel applications executed on unrelated heterogeneous multiprocessors is challenging and has not been investigated adequately by earlier works. The unrelated model is suitable to represent many of the multiprocessor platforms available today because a task (i.e., sequential code) may exhibit a different work-case-execution-time (WCET) on each type of processor on an unrelated heterogeneous multiprocessors platform. A parallel application can be realistically modeled as a directed acyclic graph (DAG), where the nodes are sequential tasks and the edges are dependencies among the tasks. This thesis considers a sporadic DAG model which is used broadly to analyze and verify the real-time requirements of parallel applications. A global work-conserving scheduler can efficiently utilize an unrelated platform by executing the tasks of a DAG on different processor types. However, it is challenging to compute an upper bound on the worst-case schedule length of the DAG, called makespan, which is used to verify whether the deadline of a DAG is met or not. There are two main challenges. First, because of the heterogeneity of the processors, the WCET for each task of the DAG depends on which processor the task is executing on during actual runtime. Second, timing anomalies are the main obstacle to compute the makespan even for the simpler case when all the processors are of the same type, i.e., homogeneous multiprocessors. To that end, this thesis addresses the following problem: How we can schedule multiple sporadic DAGs on unrelated multiprocessors such that all the DAGs meet their deadlines. Initially, the thesis focuses on homogeneous multiprocessors that is a special case of unrelated multiprocessors to understand and tackle the main challenge of timing anomalies. A novel timing-anomaly-free scheduler is proposed which can be used to compute the makespan of a DAG just by simulating the execution of the tasks based on this proposed scheduler. A set of representative task-based parallel OpenMP applications from the BOTS benchmark suite are modeled as DAGs to investigate the timing behavior of real-world applications. A simulation framework is developed to evaluate the proposed method. Furthermore, the thesis targets unrelated multiprocessors and proposes a global scheduler to execute the tasks of a single DAG to an unrelated multiprocessors platform. Based on the proposed scheduler, methods to compute the makespan of a single DAG are introduced. A set of representative parallel applications from the BOTS benchmark suite are modeled as DAGs that execute on unrelated multiprocessors. Furthermore, synthetic DAGs are generated to examine additional structures of parallel applications and various platform capabilities. A simulation framework that simulates the execution of the tasks of a DAG on an unrelated multiprocessor platform is introduced to assess the effectiveness of the proposed makespan computations. Finally, based on the makespan computation of a single DAG this thesis presents the design and schedulability analysis of global and federated scheduling of sporadic DAGs that execute on unrelated multiprocessors

    Smartlocks: Self-Aware Synchronization through Lock Acquisition Scheduling

    Get PDF
    As multicore processors become increasingly prevalent, system complexity is skyrocketing. The advent of the asymmetric multicore compounds this -- it is no longer practical for an average programmer to balance the system constraints associated with today's multicores and worry about new problems like asymmetric partitioning and thread interference. Adaptive, or self-aware, computing has been proposed as one method to help application and system programmers confront this complexity. These systems take some of the burden off of programmers by monitoring themselves and optimizing or adapting to meet their goals. This paper introduces an open-source self-aware synchronization library for multicores and asymmetric multicores called Smartlocks. Smartlocks is a spin-lock library that adapts its internal implementation during execution using heuristics and machine learning to optimize toward a user-defined goal, which may relate to performance, power, or other problem-specific criteria. Smartlocks builds upon adaptation techniques from prior work like reactive locks, but introduces a novel form of adaptation designed for asymmetric multicores that we term lock acquisition scheduling. Lock acquisition scheduling is optimizing which waiter will get the lock next for the best long-term effect when multiple threads (or processes) are spinning for a lock. Our results demonstrate empirically that lock scheduling is important for asymmetric multicores and that Smartlocks significantly outperform conventional and reactive locks for asymmetries like dynamic variations in processor clock frequencies caused by thermal throttling events
    corecore