16 research outputs found

    Adaptive hermite-polynomial-based CMAC neural control for chaos synchronization

    Get PDF
    [[abstract]]An adaptive Hermite-polynomial-based CMAC neural control (AHCNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller using a Hermite-polynomial-based CMAC neural network (HCNN) is main controller and the smooth compensator is designed to guarantee system stable in the Lyapunov stability theorem.[[notice]]缺頁數[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20121130~20121202[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Yunlin, Taiwa

    Adaptive hermite-polynomial-based CMAC neural control for chaos synchronization

    Get PDF
    [[abstract]]Gyros are a particularly interesting form of nonlinear systems that have attracted many researchers due to their applications in the navigational, aeronautical and space engineering domains. In this paper, a problem of synchronization between two chaotic gyros based on a mater-slave scheme is studied. An adaptive Hermite-polynomial-based CMAC neural control (AHCNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller using a Hermite-polynomial-based CMAC neural network (HCNN) is main controller and the smooth compensator is designed to guarantee system stable in the Lyapunov stability theorem. Finally, the simulation results show that the proposed AHCNC scheme can achieve favorable chaos synchronization after the controller parameters learning.[[sponsorship]]Chinese Automatic Control Society (CACS); National Formosa University Taiwan[[conferencetype]]國際[[conferencedate]]20121130~20121202[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Yunlin, Taiwa

    Adaptive neural complementary sliding-mode control via functional-linked wavelet neural network

    Get PDF
    [[abstract]]Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known. This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is composed of a neural controller and a robust compensator, for a chaotic system. The neural controller uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it shows by the simulation results that favorable control performance can be achieved for a chaotic system by the proposed ANCSC scheme.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    A recurrent emotional CMAC neural network controller for vision-based mobile robots

    Get PDF
    Vision-based mobile robots often suffer from the difficulties of high nonlinear dynamics and precise positioning requirements, which leads to the development demand of more powerful nonlinear approximation in controlling and monitoring of mobile robots. This paper proposes a recurrent emotional cerebellar model articulation controller (RECMAC) neural network in meeting such demand. In particular, the proposed network integrates a recurrent loop and an emotional learning mechanism into a cerebellar model articulation controller (CMAC), which is implemented as the main component of the controller module of a vision-based mobile robot. Briefly, the controller module consists of a sliding surface, the RECMAC, and a compensator controller. The incorporation of the recurrent structure in a slide model neural network controller ensures the retaining of the previous states of the robot to improve its dynamic mapping ability. The convergence of the proposed system is guaranteed by applying the Lyapunov stability analysis theory. The proposed system was validated and evaluated by both simulation and a practical moving-target tracking task. The experimentation demonstrated that the proposed system outperforms other popular neural network-based control systems, and thus it is superior in approximating highly nonlinear dynamics in controlling vision-based mobile robots

    Adaptive dynamic CMAC neural control of nonlinear chaotic systems with L2 tracking performance

    Get PDF
    [[abstract]]The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems

    Get PDF
    [[abstract]]The brain emotional learning model can be implemented with a simple hardware and processor; however, the learning model cannot model the qualitative aspects of human knowledge. To solve this problem, a fuzzy-based emotional learning model (FELM) with structure and parameter learning is proposed. The membership functions and fuzzy rules can be learned through the derived learning scheme. Further, an emotional fuzzy sliding-mode control (EFSMC) system, which does not need the plant model, is proposed for unknown nonlinear systems. The EFSMC system is applied to an inverted pendulum and a chaotic synchronization. The simulation results with the use of EFSMC system demonstrate the feasibility of FELM learning procedure. The main contributions of this paper are (1) the FELM varies its structure dynamically with a simple computation; (2) the parameter learning imitates the role of emotions in mammalians brain; (3) by combining the advantage of nonsingular terminal sliding-mode control, the EFSMC system provides very high precision and finite-time control performance; (4) the system analysis is given in the sense of the gradient descent method.[[notice]]補正完

    Adaptive TSK-type self-evolving neural control for unknown nonlinear systems

    Get PDF
    [[abstract]]In this paper, a real-time approximator using a TSK-type self-evolving neural network (TSNN) is studied. The learning algorithm of the proposed TSNN not only automatically online generates and prunes the hidden neurons but also online adjusts the network parameters.[[conferencetype]]國際[[conferencedate]]20120918~20120921[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Tokyo, Japa

    Adaptive TSK-type self-evolving neural control for unknown nonlinear systems

    Get PDF
    [[abstract]]In this paper, a real-time approximator using a TSK-type self-evolving neural network (TSNN) is studied. The learning algorithm of the proposed TSNN not only automatically online generates and prunes the hidden neurons but also online adjusts the network parameters.[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20120918~20120922[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Japan,Toky

    Design of an adaptive self-organizing fuzzy neural network controller for uncertain nonlinear chaotic systems

    Get PDF
    [[abstract]]Though the control performances of the fuzzy neural network controller are acceptable in many previous published papers, the applications are only parameter learning in which the parameters of fuzzy rules are adjusted but the number of fuzzy rules should be determined by some trials. In this paper, a Takagi–Sugeno-Kang (TSK)-type self-organizing fuzzy neural network (TSK-SOFNN) is studied. The learning algorithm of the proposed TSK-SOFNN not only automatically generates and prunes the fuzzy rules of TSK-SOFNN but also adjusts the parameters of existing fuzzy rules in TSK-SOFNN. Then, an adaptive self-organizing fuzzy neural network controller (ASOFNNC) system composed of a neural controller and a smooth compensator is proposed. The neural controller using the TSK-SOFNN is designed to approximate an ideal controller, and the smooth compensator is designed to dispel the approximation error between the ideal controller and the neural controller. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived based on the Lyapunov stability theory, thus not only the system stability can be achieved but also the convergence of tracking error can be speeded up. Finally, the proposed ASOFNNC system is applied to a chaotic system. The simulation results verify the system stabilization, favorable tracking performance, and no chattering phenomena can be achieved using the proposed ASOFNNC system.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Intelligent tracking control of a DC motor driver using self-organizing TSK type fuzzy neural networks

    Get PDF
    [[abstract]]In this paper, a self-organizing Takagi–Sugeno–Kang (TSK) type fuzzy neural network (STFNN) is proposed. The self-organizing approach demonstrates the property of automatically generating and pruning the fuzzy rules of STFNN without the preliminary knowledge. The learning algorithms not only extract the fuzzy rule of STFNN but also adjust the parameters of STFNN. Then, an adaptive self-organizing TSK-type fuzzy network controller (ASTFNC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller uses an STFNN to approximate an ideal controller, and the robust compensator is designed to eliminate the approximation error in the Lyapunov stability sense without occurring chattering phenomena. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived to speed up the convergence rates of the tracking error. Finally, the proposed ASTFNC system is applied to a DC motor driver on a field-programmable gate array chip for low-cost and high-performance industrial applications. The experimental results verify the system stabilization and favorable tracking performance, and no chattering phenomena can be achieved by the proposed ASTFNC scheme.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
    corecore