1,634 research outputs found

    Failure of Delayed Feedback Deep Brain Stimulation for Intermittent Pathological Synchronization in Parkinson's Disease

    Get PDF
    Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.Comment: 19 pages, 8 figure

    Desynchronization of systems of coupled Hindmarsh-Rose oscillators

    Get PDF
    It is widely assumed that neural activity related to synchronous rhythms of large portions of neurons in specific locations of the brain is responsible for the pathology manifested in patients' uncontrolled tremor and other similar diseases. To model such systems Hindmarsh-Rose (HR) oscillators are considered as appropriate as they mimic the qualitative behaviour of neuronal firing. Here we consider a large number of identical HR-oscillators interacting through the mean field created by the corresponding components of all oscillators. Introducing additional coupling by feedback of Pyragas type, proportional to the difference between the current value of the mean-field and its value some time in the past, Rosenblum and Pikovsky (Phys. Rev. E 70, 041904, 2004) demonstrated that the desirable desynchronization could be achieved with appropriate set of parameters for the system. Following our experience with stabilization of unstable steady states in dynamical systems, we show that by introducing a variable delay, desynchronization is obtainable for much wider range of parameters and that at the same time it becomes more pronounced.Comment: 5 pages, 2 figures, RevTe

    Synchronization in model networks of class I neurons

    Get PDF
    We study a modification of the Hoppensteadt-Izhikevich canonical model for networks of class I neurons, in which the 'pulse' emitted by a neuron is smooth rather than a delta-function. We prove two types of results about synchronization and desynchronization of such networks, the first type pertaining to 'pulse' functions which are symmetric, and the other type in the regime in which each neuron is connected to many other neurons

    Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks

    Full text link
    Synchronization is of central importance in power distribution, telecommunication, neuronal, and biological networks. Many networks are observed to produce patterns of synchronized clusters, but it has been difficult to predict these clusters or understand the conditions under which they form, except for in the simplest of networks. In this article, we shed light on the intimate connection between network symmetry and cluster synchronization. We introduce general techniques that use network symmetries to reveal the patterns of synchronized clusters and determine the conditions under which they persist. The connection between symmetry and cluster synchronization is experimentally explored using an electro-optic network. We experimentally observe and theoretically predict a surprising phenomenon in which some clusters lose synchrony while leaving others synchronized. The results could guide the design of new power grid systems or lead to new understanding of the dynamical behavior of networks ranging from neural to social
    • …
    corecore