11,361 research outputs found

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications---for which proper functionality depends sensitively on the extent of synchronization---there remains a lack of understanding for how systems evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system's ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments.Comment: 25 pages, 6 figure

    Leaders do not look back, or do they?

    Get PDF
    We study the effect of adding to a directed chain of interconnected systems a directed feedback from the last element in the chain to the first. The problem is closely related to the fundamental question of how a change in network topology may influence the behavior of coupled systems. We begin the analysis by investigating a simple linear system. The matrix that specifies the system dynamics is the transpose of the network Laplacian matrix, which codes the connectivity of the network. Our analysis shows that for any nonzero complex eigenvalue λ\lambda of this matrix, the following inequality holds: λλcotπn\frac{|\Im \lambda |}{|\Re \lambda |} \leq \cot\frac{\pi}{n}. This bound is sharp, as it becomes an equality for an eigenvalue of a simple directed cycle with uniform interaction weights. The latter has the slowest decay of oscillations among all other network configurations with the same number of states. The result is generalized to directed rings and chains of identical nonlinear oscillators. For directed rings, a lower bound σc\sigma_c for the connection strengths that guarantees asymptotic synchronization is found to follow a similar pattern: σc=11cos(2π/n)\sigma_c=\frac{1}{1-\cos\left( 2\pi /n\right)} . Numerical analysis revealed that, depending on the network size nn, multiple dynamic regimes co-exist in the state space of the system. In addition to the fully synchronous state a rotating wave solution occurs. The effect is observed in networks exceeding a certain critical size. The emergence of a rotating wave highlights the importance of long chains and loops in networks of oscillators: the larger the size of chains and loops, the more sensitive the network dynamics becomes to removal or addition of a single connection
    corecore