1,147 research outputs found

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attiré une énorme quantité de recherches ces dernières années, surtout après la présentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de très hauts débits de faible puissance tout en éliminant les interférences avec les systèmes existants à bande étroite. La faible puissance, cependant, limite la portée de propagation des radios UWB à quelques mètres pour la transmission sans fil à l’intérieur d’une pièce. En outre, des signaux UWB reçu sont étendus dans le temps en raison de la propagation par trajet multiple qui résulte en beaucoup d’interférence inter-symbole (ISI) à haut débit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thèse, nous démontrons des transmet- teurs qui sont capables de générer des impulsions UWB avec une efficacité de puissance élevée. Une impulsion efficace résulte dans un rapport de signal à bruit (SNR) supérieur au récepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomètres pour la distribution dans un réseau optique pas- sif. La fibre optique est très fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les éléments simples comme un modulateur Mach-Zehnder ou un résonateur en anneau pour générer des impulsions, ce qui permet l’intégration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel énorme pour abaisser le coût et l’encombrement des systèmes optiques. La photodétection convertit les impulsions optiques en impulsions électriques avant la transmission sur l’antenne du côté de l’utilisateur. La réponse fréquentielle de l’antenne déforme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linéaire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amélioration de l’énergie des impulsions UWB améliore directement la SNR au récepteur. Les résultats de simulation montrent que les impulsions optimisées améliorent considérablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adapté pour recevoir efficacement des impulsions UWB. Le filtre adapté est synthétisé et fabriqué en technologie microstrip, en collaboration avec l’Université McGill comme un dispositif de bande interdite électromagnétique. La réponse fréquentielle du filtre adapté montre une ex- cellente concordance avec le spectre ciblé de l’impulsion UWB. Les mesures de BER confirment la performance supérieure du filtre adapté par rapport à un récepteur à conversion directe. Le canal UWB est très riche en trajet multiple conduisant à l’ISI à haut débit. Notre dernière contribution est l’étude de performance des récepteurs en simulant un système avec des conditions de canaux réalistes. Les résultats de la simulation montrent que la performance d’un tel système se dégrade de façon significative pour les hauts débits. Afin de compenser la forte ISI dans les taux de transfert de données en Gb/s, nous étudions l’algorithme de Viterbi (VA) avec un nombre limité d’états et un égaliseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation améliore considérablement les performances par rapport à la détection de symbole. La DFE a une meilleure performance par rapport à la VA en utilisant une complexité comparable. La DFE peut couvrir une plus grande mémoire de canal avec un niveau de complexité relativement réduit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator

    Get PDF
    Optomechanical cavities have proven to be an exceptional tool to explore fundamental and technological aspects of the interaction between mechanical and optical waves. Such interactions strongly benefit from cavities with large optomechanical coupling, high mechanical and optical quality factors, and mechanical frequencies larger than the optical mode linewidth, the so called resolved sideband limit. Here we demonstrate a novel optomechanical cavity based on a disk with a radial mechanical bandgap. This design confines light and mechanical waves through distinct physical mechanisms which allows for independent control of the mechanical and optical properties. Our device design is not limited by unique material properties and could be easily adapted to allow large optomechanical coupling and high mechanical quality factors with other promising materials. Finally, our demonstration is based on devices fabricated on a commercial silicon photonics facility, demonstrating that our approach can be easily scalable.Comment: 16 pages, 11 figure

    Analysis and practical considerations in implementing multiple transmitters and receivers for wireless power transfer via coupled magnetic resonance

    Get PDF
    The technology to wirelessly power mobile devices has started to gain momentum especially in industry. Cables have started to become the thing of the past as both wireless power efficiency and communication speeds become viably attractive. The first part of this work gives analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance. Through the multiple transmitter scheme, there is an increase in gain and `diversity\u27 of the transmitted power according to the number of transmit coils. The effect of transmitter resonant coil coupling is also shown. Resonant frequency detuning due to nearby metallic objects is observed and the extent of how much tuning can be done is demonstrated. A practical power line synchronization technique is proposed to synchronize all transmit coils. This reduces additional dedicated synchronization wiring or the addition of an RF front end module. The second part of this study introduces a time division multiplexing (TDM) technique for tightly coupled receivers via the same method of coupled magnetic resonance. Two or more receivers can be powered simultaneously using a single transmit coil. In a tightly coupled receiver scenario, the received power is significantly reduced. Experimental and simulation results implementing TDM show vast improvements in received power in the tightly coupled case. Resonant frequency splitting is eliminated through synchronized detuning between receivers, which divide power equally between receivers at specific time slots. The last chapter gives insight on the capacity of a single-input single-output system at varying distances between receiver and transmitter. It is shown that the highest information rate is achieved at critical coupling

    Entanglement swapping between independent and asynchronous integrated photon-pair sources

    Full text link
    Integrated photonics represents a technology that could greatly improve quantum communication networks in terms of cost, size, scaling, and robustness. A key benchmark for this is to demonstrate their performance in complex quantum networking protocols, such as entanglement swapping between independent photon-pair sources. Here, using time-resolved detection, and two independent and integrated Si3_3N4_4 microring resonator photon-pair sources, operating in the CW regime at telecom wavelengths, we obtained spectral purities up to 0.97±0.020.97 \pm 0.02 and a HOM interference visibility between the two sources of VHOM=93.2±1.6%V_{\rm HOM}=93.2 \pm 1.6\,\%. This results in entanglement swapping visibility as high as $91.2 \pm 3.4\,\%

    Double Resonant High-Frequency Converters for Wireless Power Transfer

    Get PDF
    This thesis describes novel techniques and developments in the design and implementation of a low power radio frequency (40kHz to 1MHz) wireless power transfer (WPT) system, with an application in the wireless charging of autonomous drones without physical connection to its on-board Battery Management System (BMS). The WPT system is developed around a matrix converter exploiting the benefits such as a small footprint (DC-link free), high efficiency and high power density. The overall WPT system topology discussed in this thesis is based on the current state-of-the-art found in literature, but enhancements are made through novel methods to further improve the converter’s stability, reduce control complexity and improve the wireless power efficiency. In this work, each part of the system is analysed and novel techniques are proposed to achieve improvements. The WPT system design methodology presented in this thesis commences with the use of a conventional full-bridge converter. For cost-efficiency and to improve the converters stability, a novel gate drive circuit is presented which provides self-generated negative bias such that a bipolar MOSFET drive can be driven without an additional voltage source or magnetic component. The switching control sequences for both a full-bridge and single phase to single phase matrix converter are analysed which show that the switching of a matrix converter can be considered to be the same as a full-bridge converter under certain conditions. A middleware is then presented that reduces the complexity of the control required for a matrix converter and enables control by a conventional full-bridge controller (i.e. linear controller or microcontroller). A novel technique that can maximise and maintain in real-time the WPT efficiency is presented using a maximum efficiency point tracking approach. A detailed study of potential issues that may affect the implementation of this novel approach are presented and new solutions are proposed. A novel wireless pseudo-synchronous sampling method is presented and implemented on a prototype system to realise the maximum efficiency point tracking approach. Finally, a new hybrid wireless phase-locked loop is presented and implemented to minimise the bandwidth requirements of the maximum efficiency point tracking approach. The performance and methods for implementation of the novel concepts introduced in this thesis are demonstrated through a number of prototypes that were built. These include a matrix converter and two full WPT systems with operating frequencies ranging from sub-megahertz to megahertz level. Moreover, the final prototype is applied to the charging of a quadcopter battery pack to successfully charge the pack wirelessly whilst actively balancing the cells. Hence, fast battery charging and cell balancing, which conventionally requires battery removal, can be achieved without re-balance the weight of the UAV

    CYCLOSTATIONARY DETECTION FOR OFDM IN COGNITIVE RADIO SYSTEMS

    Get PDF
    Research on cognitive radio systems has attracted much interest in the last 10 years. Cognitive radio is born as a paradigm and since then the idea has seen contribution from technical disciplines under different conceptual layers. Since then improvements on processing capabilities have supported the current achievements and even made possible to move some of them from the research arena to markets. Cognitive radio implies a revolution that is even asking for changes in current business models, changes at the infrastructure levels, changes in legislation and requiring state of the art technology. Spectrum sensing is maybe the most important part of the cognitive radio system since it is the block designed to detect signal presence on the air. This thesis investigates what cognitive radio systems require, focusing on the spectrum sensing device. Two voice applications running under different Orthogonal Frequency Division Multiplexing (OFDM) schemes are chosen. These are WiFi and Wireless Microphone. Then, a Cyclostationary Spectrum Sensing technique is studied and applied to define a device capable of detecting OFDM signals in a noisy environment. One of the most interesting methodologies, in terms of complexity and computational requirements, known as FAM is developed. Study of the performance and frequency synchronization results are shown, including the development of a blind synchronization technique for offset estimation. 

    CYCLOSTATIONARY DETECTION FOR OFDM IN COGNITIVE RADIO SYSTEMS

    Get PDF
    Research on cognitive radio systems has attracted much interest in the last 10 years. Cognitive radio is born as a paradigm and since then the idea has seen contribution from technical disciplines under different conceptual layers. Since then improvements on processing capabilities have supported the current achievements and even made possible to move some of them from the research arena to markets. Cognitive radio implies a revolution that is even asking for changes in current business models, changes at the infrastructure levels, changes in legislation and requiring state of the art technology. Spectrum sensing is maybe the most important part of the cognitive radio system since it is the block designed to detect signal presence on the air. This thesis investigates what cognitive radio systems require, focusing on the spectrum sensing device. Two voice applications running under different Orthogonal Frequency Division Multiplexing (OFDM) schemes are chosen. These are WiFi and Wireless Microphone. Then, a Cyclostationary Spectrum Sensing technique is studied and applied to define a device capable of detecting OFDM signals in a noisy environment. One of the most interesting methodologies, in terms of complexity and computational requirements, known as FAM is developed. Study of the performance and frequency synchronization results are shown, including the development of a blind synchronization technique for offset estimation. 

    CYCLOSTATIONARY DETECTION FOR OFDM IN COGNITIVE RADIO SYSTEMS

    Get PDF
    Research on cognitive radio systems has attracted much interest in the last 10 years. Cognitive radio is born as a paradigm and since then the idea has seen contribution from technical disciplines under different conceptual layers. Since then improvements on processing capabilities have supported the current achievements and even made possible to move some of them from the research arena to markets. Cognitive radio implies a revolution that is even asking for changes in current business models, changes at the infrastructure levels, changes in legislation and requiring state of the art technology. Spectrum sensing is maybe the most important part of the cognitive radio system since it is the block designed to detect signal presence on the air. This thesis investigates what cognitive radio systems require, focusing on the spectrum sensing device. Two voice applications running under different Orthogonal Frequency Division Multiplexing (OFDM) schemes are chosen. These are WiFi and Wireless Microphone. Then, a Cyclostationary Spectrum Sensing technique is studied and applied to define a device capable of detecting OFDM signals in a noisy environment. One of the most interesting methodologies, in terms of complexity and computational requirements, known as FAM is developed. Study of the performance and frequency synchronization results are shown, including the development of a blind synchronization technique for offset estimation. 
    corecore